Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.
В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.
Ключевые слова: система линейных алгебраических уравнений, итерационный метод решения, сходимость метода.Просмотров за год: 15. Цитирований: 1 (РИНЦ). -
Нейросетевая модель определения функционального состояния опьянения человека в решении отдельных задач обеспечения транспортной безопасности
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 285-293Просмотров за год: 42. Цитирований: 2 (РИНЦ).В данной статье решается задача определения функционального состояния опьянения водителей автотранспортных средств. Ее решение актуально в сфере транспортной безопасности при прохождении предрейсовых медицинских осмотров. Решение задачи основано на применении метода пупиллометрии, позволяющего судить о состоянии водителя по его зрачковой реакции на изменение освещенности. Производится постановка задачи определения состояния опьянения водителя по анализу значений параметров пупиллограммы — временного ряда, характеризующего изменение размеров зрачка при воздействии кратковременного светового импульса. Для анализа пупиллограмм предлагается использовать нейронную сеть. Разработана нейросетевая модель определения функционального состояния опьянения водителей. Для ее обучения использованы специально подготовленные выборки данных, представляющие собой сгруппированные по двум классам функциональных состояний водителей значения следующих параметров зрачковых реакций: диаметр начальный, диаметр минимальный, диаметр половинного сужения, диаметр конечный, амплитуда сужения, скорость сужения, скорость расширения, латентное время реакции, время сужения, время расширения, время половинного сужения и время половинного расширения. Приводится пример исходных данных. На основе их анализа построена нейросетевая модель в виде однослойного персептрона, состоящего из двенадцати входных нейронов, двадцати пяти нейронов скрытого слоя и одного выходного нейрона. Для повышения адекватности модели методом ROC-анализа определена оптимальная точка отсечения классов решений на выходе нейронной сети. Предложена схема определения состояния опьянения водителей, включающая следующие этапы: видеорегистрация зрачковой реакции, построение пупиллограммы, вычисление значений ее параметров, анализ данных на основе нейросетевой модели, классификация состояния водителя как «норма» или «отклонение от нормы», принятие решений по проверяемому лицу. Медицинскому работнику, проводящему осмотр водителя, представляется нейросетевая оценка его состояния опьянения. На основе данной оценки производится заключение о допуске или отстранении водителя от управления транспортным средством. Таким образом, нейросетевая модель решает задачу повышения эффективности проведения предрейсового медицинского осмотра за счет повышения достоверности принимаемых решений.
-
Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 737-753Просмотров за год: 75.В данной работе рассматривается проксимальный быстрый градиентный метод Монтейро – Свайтера (2013 г.), в котором используется один шаг метода Ньютона для приближенного решения вспомогательной задачи на каждой итерации проксимального метода. Метод Монтейро – Свайтера является оптимальным (по числу вычислений градиента и гессиана оптимизируемой функции) для достаточно гладких задач выпуклой оптимизации в классе методов, использующих только градиент и гессиан оптимизируемой функции. За счет замены шага метода Ньютона на шаг недавно предложенного тензорного метода Ю. Е. Нестерова (2018 г.), а также за счет специального обобщения условия подбора шага в проксимальном внешнем быстром градиентном методе удалось предложить оптимальный тензорный метод, использующий старшие производные. В частности, такой тензорный метод, использующий производные до третьего порядка включительно, оказался достаточно практичным ввиду сложности итерации, сопоставимой со сложностью итерации метода Ньютона. Таким образом, получено конструктивное решение задачи, поставленной Ю. Е. Нестеровым в 2018 г., об устранении зазора в точных нижних и завышенных верхних оценках скорости сходимости для имеющихся на данный момент тензорных методов порядка $p \geqslant 3$.
-
О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217Просмотров за год: 42.Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
-
Прямо-двойственный быстрый градиентный метод с моделью
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 263-274В данной работе рассматривается возможность применения концепции $(\delta, L)$-модели функции для оптимизационных задач, в которых посредством решения прямой задачи имеется необходимость восстанавливать решение двойственной задачи. Концепция $(\delta, L)$-модели основана на концепции $(\delta, L)$-оракула, предложенной Деволдером–Глинером–Нестеровым, при этом данные авторы предложили фукнционалы в оптимизационных задачах аппроксимировать сверху выпуклой параболой с некоторым аддитивным шумом $\delta$; таким образом, им удалось получить квадратичные верхние оценки с шумом даже для негладких функционалов. Концепция $(\delta, L)$-модели продолжает эту идею за счет того, что аппроксимация сверху делается не выпуклой параболой, а некоторым более сложным выпуклым функционалом. Возможность восстанавливать решение двойственной задачи хорошо зарекомендовала себя, так как во многих случаях в прямой задаче можно значительно быстрее находить решение, чем в двойственной. Отметим, что прямо-двойственные методы хорошо изучены, но при этом, как правило, каждый метод предлагается под конкретный класс задач. Наша же цель — предложить метод, который бы включал в себя сразу различные методы. Это реализуется за счет использования концепции $(\delta, L)$-модели и адаптивной структуры наших методов. Таким образом, нам удалось получить прямо-двойственный адаптивный градиентный метод и быстрый градиентный метод с $(\delta, L)$-моделью и доказать оценки сходимости для них, причем для некоторых классов задач данные оценки являются оптимальными. Основная идея заключается в том, что нахождение двойственных решений происходит относительно оптимизационной задачи, которая аппроксимируют прямую с помощью концепции $(\delta, L)$-модели и имеет более простую структуру, поэтому находить двойственное решение у нее проще. Стоит отметить, что это происходит на каждом шаге работы оптимизационного метода; таким образом, реализуется принцип «разделяй и властвуй».
-
Методы решения парадокса Браесса на транспортной сети с автономным транспортом
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 281-294Дороги — ресурс, который может использоваться как водителями, так и автономными транспортными средствами. Ежегодно количество транспортных средств увеличивается, из-за чего каждое отдельно взятое транспортное средство тратит всё больше времени в пробках, тем самым увеличивая суммарные временные затраты. При планировании новой дороги ключевой задачей становится сокращение времени в пути. Оптимизация транспортных сетей в настоящее время часто происходит с помощью добавления новых связующих дорог между высоконагруженными частями трасс. Парадокс Браесса заключается в том, что построение нового ребра дорожной сети приводит к увеличению времени в пути для каждого транспортного средства в сети. Целью данной статьи является предложение различных разрешений парадокса Браесса при рассмотрении автономных транспортных средств в качестве участников дорожного движения. Один из вариантов топологического решения транспортной задачи — использование искусственных ограничителей трафика. Как пример таких ограничителей статья рассматривает введение выделенных полос, доступных только для определенных видов транспорта. Выделенные полосы занимают особое место в транспортной сети и могут обслуживать поток по-разному. В данной статье рассмотрены наиболее часто встречающиеся случаи распределения трафика на сети из двух дорог, приведены аналитический и численный методы оптимизации модели и представлена модель оптимального распределения трафика, которая рассматривает различные варианты выделения полос на изолированной транспортной сети. В результате проведенных исследований было обнаружено, что введение выделенных полос решает парадокс Браесса и приводит к уменьшению общего времени в пути. Решения приведены как для искусственно смоделированной сети, так и на реальных примерах. В статье представлен алгоритм моделирования трафика на браессовской сети и приведено обоснование его корректности на реальном примере.
-
Свойства алгоритмов поиска оптимальных порогов для задач многозначной классификации
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1221-1238Модели многозначной классификации возникают в различных сферах современной жизни, что объясняется всё большим количеством информации, требующей оперативного анализа. Одним из математических методов решения этой задачи является модульный метод, на первом этапе которого для каждого класса строится некоторая ранжирующая функция, упорядочивающая некоторым образом все объекты, а на втором этапе для каждого класса выбирается оптимальное значение порога, объекты с одной стороны которого относят к текущему классу, а с другой — нет. Пороги подбираются так, чтобы максимизировать целевую метрику качества. Алгоритмы, свойства которых изучаются в настоящей статье, посвящены второму этапу модульного подхода — выбору оптимального вектора порогов. Этот этап становится нетривиальным в случае использования в качестве целевой метрики качества $F$-меры от средней точности и полноты, так как она не допускает независимую оптимизацию порога в каждом классе. В задачах экстремальной многозначной классификации число классов может достигать сотен тысяч, поэтому исходная оптимизационная задача сводится к задаче поиска неподвижной точки специальным образом введенного отображения $\boldsymbol V$, определенного на единичном квадрате на плоскости средней точности $P$ и полноты $R$. Используя это отображение, для оптимизации предлагаются два алгоритма: метод линеаризации $F$-меры и метод анализа области определения отображения $\boldsymbol V$. На наборах данных многозначной классификации разного размера и природы исследуются свойства алгоритмов, в частности зависимость погрешности от числа классов, от параметра $F$-меры и от внутренних параметров методов. Обнаружена особенность работы обоих алгоритмов для задач с областью определения отображения $\boldsymbol V$, содержащей протяженные линейные участки границ. В случае когда оптимальная точка расположена в окрестности этих участков, погрешности обоих методов не уменьшаются с увеличением количества классов. При этом метод линеаризации достаточно точно определяет аргумент оптимальной точки, а метод анализа области определения отображения $\boldsymbol V$ — полярный радиус.
-
Оценка числа итераций для сильно полиномиальных алгоритмов линейного программирования
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 249-285Рассматривается прямой алгоритм решения задачи линейного программирования (ЛП), заданной в каноническом виде. Алгоритм состоит из двух последовательных этапов, на которых прямым методом решаются приведенные ниже задачи ЛП: невырожденная вспомогательная задача (на первом этапе) и некоторая задача, равносильная исходной (на втором). В основе построения вспомогательной задачи лежит мультипликативный вариант метода исключения Гаусса, в самой структуре которого заложены возможности: идентификации несовместности и линейной зависимости ограничений; идентификации переменных, оптимальные значения которых заведомо равны нулю; фактического исключения прямых переменных и сокращения размерности пространства, в котором определено решение исходной задачи. В процессе фактического исключения переменных алгоритм генерирует последовательность мультипликаторов, главные строки которых формируют матрицу ограничений вспомогательной задачи, причем возможность минимизация заполнения главных строк мультипликаторов заложена в самой структуре прямых методов. При этом отсутствует необходимость передачи информации (базис, план и оптимальное значение целевой функции) на второй этап алгоритма и применения одного из способов устранения зацикливания для гарантии конечной сходимости.
Представлены два варианта алгоритма решения вспомогательной задачи в сопряженной канонической форме. Первый основан на ее решении прямым алгоритмом в терминах симплекс-метода, а второй — на решении задачи, двойственной к ней, симплекс-методом. Показано, что оба варианта алгоритма для одинаковых исходных данных (входов) генерируют одинаковую последовательность точек: базисное решение и текущее двойственное решение вектора оценок строк. Отсюда сделан вывод, что прямой алгоритм — это алгоритм типа симплекс-метода. Также показано, что сравнение вычислительных схем приводит к выводу, что прямой алгоритм позволяет уменьшить по кубическому закону число арифметических операций, необходимых для решения вспомогательной задачи, по сравнению с симплекс-методом. Приводится оценка числа итераций.
-
Формирование оптимального управления нелинейным динамическим объектом на основе модели Такаги–Сугено
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 51-59Просмотров за год: 2.В работе рассмотрен алгоритм нечеткой системы управления существенно нелинейным динамическим объектом. Для решения нелинейной задачи оптимального управления предлагается использовать линейно-квадратичное регулирование (LQR — linear quadratic regulator) с моделью Такаги–Сугено (Takagi–Sugeno). Алгоритм может быть использован для проектирования систем оптимального управления детерминированными нелинейными объектами. Предложено использование алгоритма функционирования оптимальной системы управления для управления вращательным движением летательного аппарата.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"