Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Оптимизация словаря команд на основе статистического критерия близости в задаче распознавания невербальной речи
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 675-690В исследовании мы сосредоточились на задаче классификации невербальной речи для разработки интерфейса «мозг–компьютер» (ИМК) на основе электроэнцефалографии (ЭЭГ), который будет способен помочь людям с ограниченными возможностями и расширить возможности человека в повседневной жизни. Ранее наши исследования показали, что беззвучная речь для некоторых слов приводит к почти идентичным распределениям ЭЭГ-данных. Это явление негативно влияет на точность классификации нейросетевой модели. В этой статье предлагается метод обработки данных, который различает статисти- чески удаленные и неразделимые классы данных. Применение предложенного подхода позволяет достичь цели максимального увеличения смысловой нагрузки словаря, используемого в ИМК.
Кроме того, мы предлагаем статистический прогностический критерий точности бинарной классификации слов в словаре. Такой критерий направлен на оценку нижней и верхней границ поведения классификаторов только путем измерения количественных статистических свойств данных (в частности, с использованием метода Колмогорова – Смирнова). Показано, что более высокие уровни точности классификации могут быть достигнуты за счет применения предложенного прогностического критерия, позволяющего сформировать оптимизированный словарь с точки зрения семантической нагрузки для ИМК на основе ЭЭГ. Кроме того, использование такого обучающего набора данных для задач классификации по словарю обеспечивает статистическую удаленность классов за счет учета семантических и фонетических свойств соответствующих слов и улучшает поведение классификации моделей распознавания беззвучной речи.
-
Адаптивное управление сигналами светофоров на основе обучения с подкреплением, инвариантное к конфигурации светофорного объекта
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1253-1269В работе представлен метод адаптивного управления сигналами светофоров, инвариантный к конфигурации светофорного объекта. Предложенный метод использует одну модель нейронной сети для управления светофорами различных конфигураций, отличающихся как по числу контролируемых полос движения, так и по используемому набору фаз. Для описания пространства состояний используется как динамическая информация о состоянии транспортного потока, так и статические данные о конфигурации контролируемого перекрестка. Для повышения скорости обучения модели предлагается использовать эксперта, предоставляющего дополнительные данные для обучения модели. В качестве эксперта используется метод адаптивного управления, основанный на максимизации взвешенного потока транспортных средств через перекресток. Экспериментальные исследования разработанного метода, проведенные в системе микроскопического моделирования движения транспортных средств, подтвердили его работоспособность и эффективность. Была показана возможность применения разработанного метода в сценарии моделирования, не используемом в процессе обучения. Представлено сравнение предложенного метода с другими известными решениями задачи управления светофорным объектом, в том числе с методом, используемым в качестве эксперта. В большинстве сценариев разработанный метод показал лучший результат по критериям среднего времени движения и среднего времени ожидания. Преимущество над методом, используемым в качестве эксперта, в зависимости от исследуемого сценария составило от 2% до 12% по критерию среднего времени ожидания транспортных средств и от 1% до 7% по критерию среднего времени движения.
-
Улучшение DevSecOps с помощью непрерывного анализа и тестирования требований безопасности
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1687-1702DevSecOps требует интеграции безопасности на каждом этапе разработки программного обеспечения для обеспечения безопасных и соответствующих требованиям приложений. Традиционные методы тестирования безопасности, часто выполняемые на поздних этапах разработки, недостаточны для решения задач, связанных с непрерывной интеграцией и непрерывной доставкой (CI/CD), особенно в сложных, критически важных секторах, таких как промышленная автоматизация. В данной статье мы предлагаем подход, который автоматизирует анализ и тестирование требований безопасности путем встраивания проверки требований в конвейер CI/CD. Наш метод использует инструмент ARQAN для сопоставления высокоуровневых требований безопасности с Руководствами по технической реализации безопасности (STIGs) с помощью семантического поиска, а также RQCODE для формализации этих требований в виде кода, предоставляя тестируемые и поддающиеся исполнению руководства по безопасности. Мы внедрили ARQAN и RQCODE в рамках CI/CD, интегрировав их с GitHub Actions для обеспечения проверки безопасности в реальномврем ени и автоматической проверки соответствия. Наш подход поддерживает стандарты безопасности, такие как IEC 62443, и автоматизирует оценку безопасности, начиная с этапа планирования, улучшая прослеживаемость и согласованность практик безопасности на протяжении всего конвейера. Предварительная оценка этого подхода в сотрудничестве с компанией по промышленной автоматизации показывает, что он эффективно охватывает критические требования безопасности, достигая автоматического соответствия 66,15% руководств STIG, относящихся к платформе Windows 10. Обратная связь от отраслевых специалистов подчеркивает его практичность: 85% требований безопасности сопоставлены с конкретными рекомендациями STIG, и 62% из этих требований имеют соответствующие тестируемые реализации в RQCODE. Эта оценка подчеркивает потенциал подхода для сдвига проверки безопасности на более ранние этапы разработки, способствуя более устойчивому и безопасному жизненному циклу DevSecOps.
Ключевые слова: кибербезопасность, DevSecOps, DevOps, непрерывная интеграция, требования, требования к проектированию, тесты, обработка естественного языка, машинное обучение, SBERT, RQCODE, ARQAN, GITHUB. -
Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.
Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.
Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.
Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.
Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.
-
Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев
-
Обзор современных технологий извлечения знаний из текстовых сообщений
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1291-1315Решение общей проблемы информационного взрыва связано с системами автоматической обработки цифровых данных, включая их распознавание, сортировку, содержательную обработку и представление в виде, приемлемом для восприятия человеком. Естественным решением является создание интеллектуальных систем извлечения знаний из неструктурированной информации. При этом явные успехи в области обработки структурированных данных контрастируют со скромными достижениями в области анализа неструктурированной информации, в частности в задачах обработки текстовых документов. В настоящее время данное направление находится в стадии интенсивных исследований и разработок. Данная работа представляет собой системный обзор международных и отечественных публикаций, посвященных ведущему тренду в области автоматической обработки потоков текстовой информации, а именно интеллектуальному анализу текстов или Text Mining (TM). Рассмотрены основные задачи и понятия TM, его место в области проблемы искусственного интеллекта, а также указаны сложности при обработке текстов на естественном языке (NLP), обусловленные слабой структурированностью и неоднозначностью лингвистической ин- формации. Описаны стадии предварительной обработки текстов, их очистка и селекция признаков, которые, наряду с результатами морфологического, синтаксического и семантического анализа, являются компонентами TM. Процесс интеллектуального анализа текстов представлен как отображение множества текстовых документов в «знания», т.е. в очищенную от избыточности и шума совокупность сведений, необходимых для решения конкретной прикладной задачи. На примере задачи трейдинга продемонстрирована формализация принятия торгового решения, основанная на совокупности аналитических рекомендаций. Типичными примерами TM являются задачи и технологии информационного поиска (IR), суммаризации текста, анализа тональности, классификации и кластеризации документов и т. п. Общим вопросом для всех методов TM является выбор типа словоформ и их производных, используемых для распознавания контента в последовательностях символов NL. На примере IR рассмотрены типовые алгоритмы поиска, основанные на простых словоформах, фразах, шаблонах и концептах, а также более сложные технологии, связанные с дополнением шаблонов синтаксической и семантической информацией. В общем виде дано описание механизмов NLP: морфологический, синтаксический, семантический и прагматический анализ. Приведен сравнительный анализ современных инструментов TM, позволяющий осуществить выбор платформы, исходя из особенности решаемой задачи и практических навыков пользователя.
-
Стохастическая оптимизация в задаче цифрового предыскажения сигнала
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.
Ключевые слова: цифровое предыскажение, обработка сигнала, стохастическая оптимизация, онлайн-обучение. -
Частотные, временные и пространственные изменения электроэнцефалограммы после COVID-19 при выполнении простого речевого задания
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 691-701Используя анализ данных и применение нейронных сетей в нашей работе, мы выявили закономерности электрической активности мозга, характеризующие COVID-19. Нас интересовали частотные, временные и пространственные паттерны электрической активности у людей, перенесших COVID-19. Мы обнаружили преобладание паттернов $\alpha$-ритма в левом полушарии у здоровых людей по сравнению с людьми, переболевшими COVID-19. Более того, мы наблюдаем значительное снижение вклада левого полушария в области речевого центра у людей, перенесших COVID-19, при выполнении речевых заданий. Наши результаты показывают, что сигнал у здоровых людей более пространственно локализован и синхронизирован между полушариями при выполнении задач по сравнению с людьми, перенесшими COVID-19. Мы также наблюдали снижение низких частот в обоих полушариях после COVID-19. Электроэнцефалографические (ЭЭГ) паттерны COVID-19 обнаруживаются в необычной частотной области. То, что обычно считается шумом в ЭЭГ-данных, несет в себе информацию, по которой можно определить, переболел ли человек COVID-19. Эти паттерны можно интерпретировать как признаки десинхронизации полушарий, преждевременного старения мозга и стресса при выполнении простых задач по сравнению с людьми без COVID-19 в анамнезе. В нашей работе мы показали применимость нейронных сетей для выявления долгосрочных последствий COVID-19 на данные ЭЭГ. Кроме того, наши данные подтвердили гипотезу о тяжести последствий COVID-19, обнаруженных по ЭЭГ-данным. Представленные результаты функциональной активности мозга позволяют использовать методы машинного обучения на простых неинвазивных интерфейсах «мозг–компьютер» для выявления пост-COVID-синдрома и прогресса в нейрореабилитации.
Ключевые слова: COVID-19, интерфейс «мозг–компьютер», ЭЭГ, частотные паттерны, строение мозга, нейрореабилитация, постковидный синдром, глубокое обучение. -
Модели сверточных нейронных сетей для классификации поврежденных вредителями хвойных деревьев на изображениях с беспилотных летательных аппаратов
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1271-1294В статье рассмотрена задача мультиклассификации хвойных деревьев с различной степенью поражения насекомыми-вредителями на изображениях, полученных с помощью беспилотных летательных аппаратов (БПЛА). Предложены три модификации классической сверточной нейронной сети U-Net для попиксельной классификации изображений пораженных деревьев пихты сибирской Abies sibirica и кедра сибирского Pinus sibirica. Первая модель Мо-U-Net вносит ряд изменений в классическую модель U-Net. Вторая и третья модели, названные MSC-U-Net и MSC-Res-U-Net, представляют собой ансамбли из трех моделей Мо-U-Net с разной глубиной и размерами входных изображений. В модели MSC-Res-U-Net также используются остаточные блоки. Нами созданы два датасета по изображениям с БПЛА пораженных вредителями деревьев Abies sibirica и Pinus Sibirica и обучены предложенные три модели с использованием функций потерь mIoULoss и Focal Loss. Затем исследовалась эффективность каждой обученной модели при классификации поврежденных деревьев Abies sibirica и Pinus sibirica. Результаты показали, что в случае использования функции потерь mIoULoss предложенные модели не пригодны для практического применения в лесной отрасли, поскольку не позволяют получить для отдельных классов деревьев этих пород точность классификации по метрике IoUс, превышающую пороговое значение 0,5. Однако в случае функции потерь Focal Loss модели MSC-Res-U-Net и Mo-U-Net, в отличие от третьей предложенной модели MSC-U-Net, для всех классов деревьев Abies sibirica и Pinus sibirica показывают высокую точность классификации (превышение порогового значения 0,5 по метрикам IoUс и mIoU). Эти результаты позволяют считать, что модели MSC-Res-U-Net и Mo-U-Net являются практически значимыми для специалистов лесной отрасли, поскольку позволяют выявлять хвойные деревья этих пород на ранней стадии их поражения вредителями.
-
Метод контрастного семплирования для предсказания библиографических ссылок
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1317-1336В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.
Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.
Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"