Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'неоднородная система':
Найдено статей: 61
  1. Нефедова О.А., Спевак Л.Ф., Казаков А.Л., Ли М.Г.
    Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467

    В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.

  2. Самсонов К.Ю., Кабанов Д.К., Назаров В.Н., Екомасов Е.Г.
    Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868

    В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.

  3. Четырбоцкий А.Н., Четырбоцкий В.А.
    Модель мантийной конвекции в зоне полного цикла субдукции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1385-1398

    Разработана численная 2D-модель погружения холодной океанической плиты в толщу верхней мантии Земли, где этапу начального погружения плиты предшествует установление режима термогравитационной конвекции мантийного вещества. Модельным приближением мантии выступает двумерный образ несжимаемой ньютоновской квазижидкости в декартовой системе координат, где вследствие высокой вязкости среды уравнения мантийной конвекции принимаются в стоксовском приближении. Полагается, что вместе с плитой в верхние слои мантии поступает просочившаяся сюда морская вода. С глубиной рост давления и температуры приводит к определенным потерям ее легких фракций и флюидов, потерям воды и газов водосодержащих минералов плиты, перестройке их кристаллической решетки и, как следствие, фазовым превращениям. Эти потери обусловливают рост плотности плиты и неравномерность распределения вдоль плиты напряжений (начальные участки плиты оказываются менее плотными), что в последствии вместе с воздействием на плиту мантийных течений вызывает ее фрагментацию. Рассматривается состояние мантийной конвекции, когда плита и ее отдельные фрагменты опустились на подошву верхней мантии. Разработаны вычислительные схемы решения уравнений модели. Расчеты мантийной конвекции выполнены в терминах приближения Стокса для завихренности и функции тока, а для расчетов состояния и погружения плиты использован SPH. Выполнен ряд вычислительных экспериментов. Показано, что вследствие воздействия на плиту мантийной конвекции и с развитием вдоль плиты неоднородного поля напряжений происходит ее фрагментация. Следуя уравнениям модели, оценивается время финальной стадии субдукции, т. е. времени выхода всей океанической плиты на дно верхней мантии. В геодинамике этот процесс определяется коллизией плит, следует непосредственно за субдукцией и рассматривается обычно в качестве конечного этапа цикла Уилсона (т. е. цикла развития складчатых поясов).

  4. Павлов П.А.
    Математические модели и методы организации вычислений в мультипроцессорных системах
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 423-436

    В работе предложена и исследована математическая модель распределенной вычислительной системы параллельных взаимодействующих процессов, конкурирующих за использование ограниченного числа копий структурированного программного ресурса. В случаях неограниченного и ограниченного параллелизма по числу процессоров мультипроцессорной системы решены задачи определения оперативных и точных значений времени выполнения неоднородных и одинаково распределенных конкурирующих процессов в синхронном режиме, при котором обеспечивается линейный порядок выполнения блоков структурированного программного ресурса внутри каждого из процессов без задержек. Полученные результаты можно использовать при сравнительном анализе математических соотношений для вычисления времени реализации множества параллельных распределенных взаимодействующих конкурирующих процессов, математическом исследовании эффективности и оптимальности организации распределенных вычислений, решении задач построения оптимальной компоновки блоков одинаково распределенной системы, нахождения оптимального числа процессоров, обеспечивающих директивное время выполнения заданных объемов вычислений. Предложенные модели и методы открывают новые перспективы при решении проблем оптимального распределения ограниченных вычислительных ресурсов, синхронизации множества взаимодействующих конкурирующих процессов, минимизации системных затрат при выполнении параллельных распределенных процессов.

  5. Курушина С.Е., Шаповалова Е.А.
    Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607

    В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.

    Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.

    В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.

    Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.

    Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.

    Просмотров за год: 7.
  6. В статье представлены математические и численные модели взаимосвязанных термо- и гидродинамических процессов эксплуатационного режима разработки единого нефтедобывающего комплекса при гидрогелевом заводнении неоднородного нефтяного пласта, вскрытого системой произвольно расположенных нагнетательных скважин и добывающих скважин, оснащенных погружными многоступенчатыми электроцентробежными насосами. Особенностью нашего подхода является моделирование работы специального наземного оборудования (станции управления погружными насосами и штуцерной камеры на устье добывающих скважин), предназначенного для регулирования режимов работы как всего комплекса в целом, так и его отдельных элементов.

    Полная дифференциальная модель включает в себя уравнения, описывающие нестационарную двухфазную пятикомпонентную фильтрацию в пласте, квазистационарные процессы тепло- и массопереноса в трубах скважин и рабочих каналах погружных насосов. Специальные нелинейные граничные условия моделируют, соответственно, влияние диаметра дросселя на расход и давление на устье каждой добывающей скважины, а также частоты электрического тока на эксплуатационные характеристики погружного насосного узла. Разработка нефтяных месторождений также регулируется посредством изменения забойного давления каждой нагнетательной скважины, концентраций закачиваемых в нее гелеобразующих компонентов, их общих объемов и продолжительности закачки. Задача решается численно с использованием консервативных разностных схем, построенных на основе метода конечных разностей. Разработанные итерационные алгоритмы ориентированы на использование современных параллельных вычислительных технологий. Численная модель реализована в программном комплексе, который можно рассматривать как «интеллектуальную систему скважин» для виртуального управления разработкой нефтяных месторождений.

  7. Долуденко А.Н., Куликов Ю.М., Панов В.А., Савельев А.С., Терешонок Д.В.
    Развитие неустойчивости границы раздела «вода – масло» в вертикальном электрическом поле
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 633-645

    Наличие контактной границы между водой и маслом сильно снижает электрическую прочность масляной фазы. Присутствие электрического поля приводит к различной степени поляризации на границе раздела и появлению силы, действующей на жидкость с большей диэлектрической проницаемостью (вода) в направлении жидкости с меньшей диэлектрической проницаемостью (масло), что приводит к развитию неустойчивости контактной поверхности. Неустойчивость в результате своего развития приводит к вытягиванию струйки воды в толщу масла и нарушению изоляционного промежутка.

    В настоящей работе экспериментально и численно исследуется электрогидродинамическая неустойчивость на границе фаз «электропроводящая вода – трансформаторное масло» в сильно неоднородном электрическом поле, направленном перпендикулярно контактной границе. Представлены результаты натурного и численного эксперимента по исследованию развития электрогидродинамической неустойчивости в сильном электрическом поле на границе раздела воды и трансформаторного масла, приводящей к деформации этой границы жидкостей. Система состоит из шарообразного электрода радиусом 3,5 мм, помещенного в воду проводимостью 5 мкСм/см, и тонкого электрода-лезвия толщиной 0,1 мм, помещенного в трансформаторное масло марки ГК. Контактная граница проходит на одинаковом расстоянии от ближайших точек электродов, равном 3 мм. В работе показано, что при некоторой напряженности электрического поля происходит рост конусообразной структуры воды в сторону электрода, погруженного в трансформаторное масло. Численно получено соответствие как формы образующейся водной структуры (конуса) в течение всего времени роста, так и размера, отсчитываемого от ее вершины до уровня начальной контактной границы разделения фаз. Исследована динамика роста данной структуры. И в численном расчете, и в эксперименте обнаружено, что размер образующегося конуса вдоль линии соединения электродов линейно зависит от времени.

  8. Петров И.Б., Муратов М.В., Фаворская А.В., Бирюков В.А., Санников А.В.
    Численное моделирование прямых трехмерных задач сейсморазведки с применением сеточно-характеристического метода на неструктурированных тетраэдральных сетках
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 875-887

    В статье приводятся результаты трехмерного моделирования сейсмических откликов от трещиноватых геологических пластов с использованием сеточно-характеристического метода на неструктурированных тетраэдральных сетках с применением высокопроизводительных вычислительных систем. Используемый метод лучше всего подходит для моделирования задач сейсморазведки в областях с большим числом неоднородностей (трещин). Применение неструктурированных тетраэдральных сеток позволяет задавать трещины произвольной геометрии и пространственной ориентации, что дает возможность решать задачи в постановке, наиболее приближенной к реальности.

    Просмотров за год: 7. Цитирований: 1 (РИНЦ).
  9. Алпеева Л.Е., Цибулин В.Г.
    Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671

    Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  10. Стогний П.В., Петров И.Б.
    Численное моделирование распространения сейсмических волн в моделях с ледовым полем в зоне арктического шельфа
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 73-82

    В зоне арктического шельфа расположены огромные запасы углеводородов. Проведение исследовательских работ на данной территории осложняется наличием различных ледовых образований, например айсбергов, торосов, ледовых полей. Во время проведения сейсморазведочных работ последние из выше перечисленных ледовых образований, ледовые поля, вносят в сейсмограммы многочисленные отражения сейсмического сигнала от границ «лед–вода» и «лед–воздух», распространяющиеся по всей поверхности льда. Данные многочисленные отражения необходимо учитывать при анализе сейсмограмм, а также уметь их исключать с целью получения отраженных волн от нижележащих геологических слоев, включая залежи углеводородов.

    В работе решается задача о распространении сейсмических волн в неоднородной среде. Геологические среды описываются системами уравнений линейной упругости и акустики. Представлено подробное описание численного решения данных систем уравнений с помощью сеточно-характеристического метода. Для решения конечных одномерных уравнений переноса, к которым приводятся системы, применяется схема Русанова третьего порядка точности. В работе рассматривается способ подавления многочисленных отражений во льду путем заглубления источника сейсмического сигнала вплоть до границы с водой. Такой способ подавления кратных волн часто используется в реальных геологических работах. Представлены результаты численных расчетов распространения сейсмических волн в моделях с заглубленным источником импульса, а также в моделях с сейсмическим источником на поверхности льда для трехмерного случая. Результатами численного моделирования являются волновые картины, графики значений продольной компоненты скорости и сейсмограммы для двух рассматриваемых постановок задач. В работе проводится анализ влияния различных постановок источника на уменьшение продольных компонент скорости в слое льда, на результирующие сейсмограммы и волновые поля. Делается вывод о том, что заглубление источника только ухудшает конечный результат при условии помещения источника и приемников сигнала на границе «лед–вода». Уменьшение продольных компонент скорости во льду показала постановка источника на поверхности льда.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.