Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'нелинейные системы':
Найдено статей: 118
  1. Блантер Е.М., Елаева М.С., Шнирман М.Г.
    Синхронизация и несимметрия в модели Курамото из трех неидентичных осцилляторов: особенности моделирования меридионального потока Солнца
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 345-356

    Модели Курамото нелинейно связанных осцилляторов позволяют достаточно просто описывать фазовую синхронизацию в сложных системах. В данной работе мы рассматриваем частный случай модели Курамото с тремя осцилляторами, возникший в процессе исследования и моделирования меридионального потока в конвективной зоне Солнца. В рассматриваемой модели крайние осцилляторы связаны только со средним, а прямая связь между ними отсутствует. В отличие от классических моделей Курамото рассматриваемая система предполагает существенную асимметрию в связях каждого из осцилляторов с двумя другими. Мы исследуем, какое влияние на синхронизацию оказывает коэффициент связи, характеризующий асимметрию связей среднего осциллятора. Необходимое и достаточное условия синхронизации в этой работе выписываются аналитически и получаются отличными от достаточных условий синхронизации в классической (симметричной) модели. Мы формулируем обратную задачу восстановления коэффициентов связи из фазовой разницы крайних осцилляторов при известных естественных частотах. Восстановление проводится в предположении синхронизации. Получено, что коэффициенты связи с точностью до знака восстанавливаются для любого значения коэффициента несимметрии среднего осциллятора. Мы исследуем, как меняется график зависимости суммарной связи от коэффициента несимметрии при изменении разности фаз крайних осцилляторов, а также в особых случаях совпадающих или сильно отличающихся естественных частот. В случае общего положения, при разности фаз крайних осцилляторов, близких к $\pi$, суммарная связь, соответствующая сильной асимметрии связей среднего осциллятора, оказывается меньше, чем в симметричном случае. Мы рассматриваем значения естественных частот, пересчитанные из скоростей меридионального потока Солнца. В зависимости от интерпретации данных гелиосейсмологии мы получаем два случая: случай общего положения, соответствующий наблюдениям средней ячейки, и особый случай, соответствующий наблюдениям нижней ячейки. Однозначное (с точностью до знака) восстановление коэффициентов связи в случае слабой суммарной связи возможно только в случае общего положения. В заключении делаются выводы о возможности использования курамотовских моделей с асимметрией связей, относящихся к одному осциллятору, для моделирования слабо связанных систем, к каким, по всей видимости, относится солнечная меридиональная циркуляция.

  2. Янбарисов Р.М.
    Параллельный метод вложенных дискретных трещин для моделирования течений в трещиноватых пористых средах
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 735-745

    В данной работе рассматривается параллельный метод решения задач однофазной фильтрации в трещиноватой пористой среде, основанный на представлении трещин вложенными в расчетную сетку поверхностями и называемый в литературе моделью (или методом) вложенных дискретных трещин. В рамках модели пористая среда и крупные трещины представляются в виде двух независимых континуумов. Отличительной особенностью рассматриваемого подхода является то, что расчетная сетка не перестраивается под положение трещин, при этом для каждой ячейки, пересекаемой трещиной, вводится дополнительная степень свободы. Дискретизация потоков между введенными континуумами трещин и пористой среды использует преднасчитанные характеристики пересечения поверхностей трещин с трехмерной расчетной сеткой. При этом дискретизация потоков внутри пористой среды не зависит от потоков между континуумами. Это позволяет интегрировать модель в уже существующие симуляторы многофазных течений в пористых коллекторах и при этом точно описывать поведение течений вблизи трещин.

    Ранее автором был предложен монотонный метод вложенных дискретных трещин, основанный на применении метода конечных объемов с нелинейными схемами дискретизации потоков внутри пористой среды: монотонной двухточечной схемы или компактной многоточечной схемы с дискретным принципом максимума. Было доказано, что дискретное решение полученной нелинейной задачи для системы «пористая среда + трещины» сохраняет неотрицательность или удовлетворяет дискретному принципу максимума в зависимости от выбора схемы дискретизации.

    Данная работа является продолжением предыдущих исследований. Предложенный метод был параллелизован с помощью программной платформы INMOST и протестирован. Были использованы такие возможности INMOST, как сбалансированное распределение сетки по процессорам, масштабируемые методы решения разреженных распределенных систем линейных уравнений и другие. Были проведены параллельные расчеты, демонстрирующие хорошую масштабируемость при увеличении числа процессоров.

  3. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И.
    Молекулярно-динамические исследования равновесных конфигураций одноименно заряженных частиц в планарных системах с круговой симметрией
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 609-618

    В данной работе представлены результаты численного анализа равновесных конфигураций отрицательно заряженных частиц (электронов), запертых в круговой области бесконечным внешним потенциалом на ее границе. Для поиска устойчивых конфигураций с минимальной энергией авторами разработан гибридный вычислительный алгоритм. Основой алгоритма являются интерполяционные формулы, полученные из анализа равновесных конфигураций, полученных с помощью вариационного принципа минимума энергии для произвольного, но конечного числа частиц в циркулярной модели. Решения нелинейных уравнений данной модели предсказывают формирование оболочечной структуры в виде колец (оболочек), заполненных электронами, число которых уменьшается при переходе от внешнего кольца к внутренним. Число колец зависит от полного числа заряженных частиц. Полученные интерполяционные формулы распределения полного числа электронов по кольцам используются в качестве начальных конфигураций для метода молекулярной динамики. Данный подход позволяет значительно повысить скорость достижения равновесной конфигурации для произвольно выбранного числа частиц по сравнению с алгоритмом имитации отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.

  4. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

  5. Кондратов Д.В., Кондратова Т.С., Попов В.С., Попова А.А.
    Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597

    В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.

  6. Соколов С.В., Маршаков Д.В., Решетникова И.В.
    Высокоточная оценка пространственной ориентации видеокамеры системы технического зрения подвижного робототехнического комплекса
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 93-107

    Эффективность подвижных робототехнических комплексов (ПРТК), осуществляющих мониторинг дорожной обстановки, городской инфраструктуры, последствий чрезвычайных ситуаций и пр., напрямую зависит от качества функционирования систем технического зрения, являющихся важнейшей частью ПРТК. В свою очередь, точность обработки изображений в системах технического зрения в существенной степени зависит от точности пространственной ориентации видеокамеры, размещаемой на ПРТК. Но при размещении видеокамер на ПРТК резко возрастает уровень погрешностей их пространственной ориентации, вызванных ветровыми и сейсмическими колебаниями мачты, движением ПРТК по пересеченной местности и пр. В связи с этим в статье рассмотрено общее решение задачи стохастической оценки параметров пространственной ориентации видеокамер в условиях как случайных колебаний мачты, так и произвольного характера движения ПРТК. Так как методы решения данной задачи на основе спутниковых измерений при высокой интенсивности естественных и искусственных радиопомех (способы формирования которых постоянно совершенствуются) не в состоянии обеспечить требуемую точность решения, то в основу предложенного подхода положено использование автономных средств измерения — инерциальных и неинерциальных. Но при их использовании возникает проблема построенияи стохастической оценки общей модели движения видеокамеры, сложность которой определяется произвольным движением ПРТК, случайными колебаниями мачты, помехами измеренияи др. В связи с нерешенностью данной проблемы на сегодняшний день в статье рассмотрен синтез как модели движения видеокамеры в самом общем случае, так и стохастической оценки ее параметров состояния. При этом разработанный алгоритм совместной оценки параметров пространственной ориентации видеокамеры, размещенной на мачте ПРТК, является инвариантным и к характеру движения мачты, и видеокамеры, и самого ПРТК, обеспечивая при этом устойчивость и требуемую точность оценивания при самых общих предположениях о характере помех чувствительных элементов используемого автономного измерительного комплекса. Результаты численного эксперимента позволяют сделать вывод о возможности практического применения предложенного подхода для решения задачи текущей пространственной ориентации ПРТК и размещенных на них видеокамер, причем с использованием недорогих автономных средств измерения.

  7. Брацун Д.А., Захаров А.П.
    Моделирование пространственно-временной динамики циркадианных ритмов Neurospora crassa
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 191-213

    В работе предложена новая модель циркадианных колебаний нейроспоры, которая описывает пространственно-временную динамику белков, ответственных за механизм биоритмов. Модель основывается на нелинейном взаимодействии белков FRQ и WCC, кодируемых генами frequency и white collar, и включает в себя как положительную, так и отрицательную петлю обратной связи. Главным элементом механизма колебаний является эффект запаздывания в биохимических реакциях транскрипции генов. Показано, что модель воспроизводит такие свойства циркадианных колебаний нейроспоры как захват частоты под действием внешнего периодического освещения, сброс фазы биоритмов при воздействии импульса света, устойчивость механизма колебаний по отношению к случайным флуктуациям и т. д. Исследованы волновые структуры, возникающие в ходе пространственной эволюции системы. Показано, что волны синхронизации биоритмов среды возникают под воздействием базального транскрипционного фактора.

    Просмотров за год: 6. Цитирований: 20 (РИНЦ).
  8. Любушин А.А., Фарков Ю.А.
    Синхронные компоненты финансовых временных рядов
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655

    В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.

    Просмотров за год: 12. Цитирований: 2 (РИНЦ).
  9. Брацун Д.А., Лоргов Е.С., Полуянов А.О.
    Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.

    Просмотров за год: 30.
  10. Мадера А.Г.
    Моделирование воздействия тепловой обратной связи на тепловые процессы в электронных системах
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 483-494

    Статья посвящена эффекту тепловой обратной связи, возникающему при функционировании интегральных микросхем и электронных систем, использующих микросхемы. Тепловая обратная связь обусловливается тем, что потребляемая при функционировании микросхемы мощность нагревает ее и, в силу значительной зависимости ее электрических параметров от температуры, между ее электрическими и тепловыми процессами возникает интерактивное взаимодействие. Воздействие тепловой обратной связи приводит к изменению как электрических параметров, так и уровней температуры в микросхемах. Положительная тепловая обратная связь представляет собой нежелательное явление, поскольку является причиной выхода электрических параметров микросхем за пределы допустимых значений, снижения надежности и, в ряде случаев, выгорания. Отрицательная тепловая обратная связь проявляется в стабилизации электрического и теплового режимов при пониженных уровнях температуры. Поэтому при проектировании микросхем и электронных систем с их применением необходимо добиваться реализации отрицательной обратной связи. В настоящей работе предлагается метод моделирования теплового режима электронных систем с учетом воздействия тепловой обратной связи. Метод основан на введении в тепловую модель электронной системы новых модельных схемных элементов, нелинейно зависящих от температуры, количество которых равно количеству микросхем в электронной системе. Такой подход позволяет применять к тепловой модели с введенными в нее новыми схемными элементами матрично-топологические уравнения тепловых процессов и включать их в существующие программные комплексы теплового проектирования. Приведен пример моделирования теплового процесса в реальной электронной системе с учетом воздействия тепловой обратной связи на примере микросхемы, установленной на печатной плате. Показано, что для адекватного моделирования электрических и тепловых процессов микросхем и электронных систем необходимо во избежание ошибок проектирования и создания конкурентоспособных электронных систем учитывать воздействие тепловой обратной связи.

    Просмотров за год: 22. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.