Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'модель':
Найдено статей: 764
  1. Подлипнова И.В., Персиянов М.И., Швецов В.И., Гасникова Е.В.
    Транспортное моделирование: усреднение ценовых матриц
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 317-327

    В данной работе рассматриваются различные подходы к усреднению обобщенных цен передвижений, рассчитанных для разных способов передвижения в транспортной сети. Под способом передвижения понимается как вид транспорта, например легковой автомобиль или транспорт общего пользования, так и передвижение без использования транспорта, например пешком. Задача расчета матриц передвижений включает в себя задачу вычисления суммарных матриц, иными словами — оценку общего спроса на передвижения всеми способами, а также задачу расщепления матриц по способам передвижений, называемого также модальным расщеплением. Для расчета матриц передвижений используют гравитационные, энтропийные и иные модели, в которых вероятность передвижения между районами оценивается на основе некоторой меры удаленности этих районов друг от друга. Обычно в качестве меры дальности используется обобщенная цена передвижения по оптимальному пути между районами. Однако обобщенная цена передвижения отличается для разных способов передвижения. При расчете суммарных матриц передвижений возникает необходимость усреднения обобщенных цен по способам передвижения. К процедуре усреднения предъявляется естественное требование монотонности по всем аргументам. Этому требованию не удовлетворяют некоторые часто применяемые на практике способы усреднения, например усреднение с весами. Задача модального расщепления решается применением методов теории дискретного выбора. В частности, в рамках теории дискретного выбора разработаны корректные методы усреднения полезности альтернатив, монотонные по всем аргументам. Авторы предлагают некоторую адаптацию методов теории дискретного выбора для применения к вычислению усредненной цены передвижений в гравитационной и энтропийной моделях. Перенос формул усреднения из контекста модели модального расщепления в модель расчета матриц передвижений требует ввода новых параметров и вывода условий на возможное значение этих параметров, что и было проделано в данной статье. Также были рассмотрены вопросы перекалибровки гравитационной функции, необходимой при переходе на новый метод усреднения, если имеющаяся функция откалибрована с учетом использования средневзвешенной цены. Предложенные методики были реализованы на примере небольшого фрагмента транспортной сети. Приведены результаты расчетов, демонстрирующие преимущество предложенных методов.

  2. Кондратов Д.В., Кондратова Т.С., Попов В.С., Попова А.А.
    Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597

    В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.

  3. Диденко Д.В., Балуев Д.Е., Маров И.В., Никаноров О.Л., Рогожкин С.А., Сорокин С.Е.
    Расчетное моделирование теплофизических процессов в высокотемпературном газоохлаждаемом реакторе
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 895-906

    В настоящее время в Российской Федерации разрабатывается высокотемпературный газоохлаждаемый реактор, являющийся составной частью атомной энерготехнологической станции, предназначенной для крупномасштабного производства водорода. При разработке проекта высокотемпературного газоохлаждаемого реактора одной из ключевых задач является расчетное обоснование принятой конструкции.

    В статье приводится методика расчетного анализа теплофизических характеристик высокотемпературного газоохлаждаемого реактора. Методика базируется на использовании современных вычислительных программ для электронно-вычислительных машин.

    Выполнение задачи теплофизического расчета реактора в целоми активной зоны в частности проводилось в три этапа. Первый этап заключается в обосновании нейтронно-физических характеристик активной зоны блочного типа в процессе выгорания с использованием программы MCU-HTR, основанной на методе Монте-Карло. Вторым и третьим этапами являются исследования течения теплоносителя и температурного состояния реактора и активной зоны в трехмерной постановке с требуемой степенью детализации с помощью программ FlowVision и ANSYS.

    Для проведения расчетных исследований были разработаны расчетные модели проточной части реактора и колонны тепловыделяющих сборок.

    По результатам расчетного моделирования оптимизированы конструкция опорных колонн и нейтронно-физические параметры тепловыделяющей сборки. Это привело к снижению суммарного гидравлического сопротивления реактора и максимальной температуры топливных элементов.

    Показана зависимость максимальной температуры топлива от величины коэффициентов неравномерности энерговыделения, определяемой расположением поглощающих стержней и компактов выгорающего поглотителя в тепловыделяющей сборке.

  4. Лубашевский И.А., Лубашевский В.И.
    Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87

    В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.

    В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.

  5. Шаббир К.У., Извеков О.Я., Конюхов А.В.
    Моделирование двухфазного течения в пористых средах с использованием неоднородной сетевой модели
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 913-925

    Представлена неоднородная двумерная сетевая модель двухфазного течения в пористых средах. Предполагается, что ребра сети представляют собой капиллярные трубки разного радиуса. Предложен новый алгоритм управления фазовыми потоками в узлах этой сетевой модели. Показано, что сетевая модель демонстрирует свойства, аналогичные свойствам реальных пористых сред: капиллярная пропитка, зависимость капиллярного давления от насыщенности и влияние капиллярных сил при двухфазном течении. Было решено две тестовые задачи: противоточная пропитка пористого блока и двухфазное течение в периодически неоднородной пористой среде. В первой задаче реализована сеть, состоящая из двух областей: область с низкой проницаемостью и тонкими капиллярами окружена областью с высокой проницаемостью и толстыми капиллярами, изначально насыщенными смачивающими и несмачивающими несжимаемыми жидкостями соответственно. Капиллярное равновесие устанавливается за счет противоточной пропитки внутренней области. Исследована зависимость насыщенности смачивающей жидкости в областях от времени и капиллярного давления от текущей насыщенности. Получено качественное соответствие известным экспериментальным и теоретическим результатам, что в дальнейшем позволит использовать эту сетевую модель для проверки осредненных моделей капиллярной неравновесности. Во второй задаче рассматривается двухфазное вытеснение, при котором сеть изначально насыщается несмачивающей жидкостью. Затем смачивающая жидкость вводится через границу с постоянным расходом. Анализируется распределение насыщенности вдоль оси, направленной вдоль приложенного градиента давления, для различных моментов времени при различных значениях коэффициентов поверхностного натяжения. Результаты расчетов показывают, что при более низких значениях коэффициента поверхностного натяжения смачивающая жидкость предпочитает проникать через более толстые трубки, а при более высоких значениях — через более тонкие.

  6. В настоящей работе рассматривается математическая модель динамики клеточной ткани. В первой части дается вывод модели, основные положения и постановка задачи. Во второй части итоговая система исследуется численно и приводятся результаты моделирования. Постулируется, что клеточная ткань есть трехфазная среда, которая состоит из твердого скелета (представляющего собой внеклеточный матрикс), клеток и внеклеточной жидкости. Ко всему прочему учитывается наличие питательных веществ в ткани. В основу модели положены уравнения сохранения массы с учетом обмена масс, уравнения сохранения импульса для каждой фазы, а также уравнение диффузии для питательных веществ. В уравнении, описывающем клеточную фазу, также учитывается слагаемое, описывающее химическое воздействие на ткань, которое называется хемотаксисом — движением клеток, вызванным градиентом концентрации химических веществ. Исходная система уравнений сводится к системе трех уравнений для нахождения пористости, насыщенности клеток и концентрации питательных веществ. Данные уравнения дополняются начальными и краевыми условиями. В одномерном случае в начальный момент времени задается распределение пористости, концентрации клеточной фазы и питательных веществ. На левой границе задана постоянная концентрация питательных веществ, что соответствует, например, поступлению кислорода из сосуда, а также поток концентрации клеток на ней равен нулю. На правой границе рассматриваются два типа условий: первое — условие непроницаемости правой границы, второе — условие постоянной концентрации клеточной фазы и нулевой поток концентрации питательных веществ. В обоих случаях условия для матрикса и внеклеточной жидкости одинаковы, предполагается наличие источника питательных веществ (кровеносного сосуда) на левой границе области моделирования. В результате моделирования было выявлено, что хемотаксис оказывает значительное влияние на рост ткани. При отсутствии хемотаксиса зона уплотнения распространяется на всю область моделирования, но при увеличении влияния хемотаксиса на ткань образуется область деградации, в которой концентрация клеток становится ниже начальной.

  7. Кхан С.А., Шулепина С., Шулепин Д., Лукманов Р.А.
    Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1601-1619

    В современном мире, ориентированном на технологии, легкие устройства, такие как устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распространенными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают урезанными возможностями, по сравнению со стандартными версиями, такими как ограниченная память и вычислительная мощность. Современные модели машинного обучения могут содержать миллионы параметров, что приводит к значительному росту требований по объему памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обработке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как автономное вождение или медицинская диагностика.

    В последние годы нейронные сети достигли значительного прогресса в методах оптимизации моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Данный обзор представляет собой подробное исследование прогресса и последних достижений в оптимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация, прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает, как эти алгоритмические решения развивались и как новые подходы улучшили существующие методы, делая нейронные сети более эффективными. Статья предназначена для исследователей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие исследования в области оптимизации нейронных сетей для достижения лучшей производительности, снижения потребления энергии и ускорения времени обучения, что играет важную роль в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы в текущих исследованиях и закладывается основа для будущих исследований, направленных на повышение применимости и эффективности существующих стратегий оптимизации.

  8. Соколов С.В., Маршаков Д.В., Решетникова И.В.
    Высокоточная оценка пространственной ориентации видеокамеры системы технического зрения подвижного робототехнического комплекса
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 93-107

    Эффективность подвижных робототехнических комплексов (ПРТК), осуществляющих мониторинг дорожной обстановки, городской инфраструктуры, последствий чрезвычайных ситуаций и пр., напрямую зависит от качества функционирования систем технического зрения, являющихся важнейшей частью ПРТК. В свою очередь, точность обработки изображений в системах технического зрения в существенной степени зависит от точности пространственной ориентации видеокамеры, размещаемой на ПРТК. Но при размещении видеокамер на ПРТК резко возрастает уровень погрешностей их пространственной ориентации, вызванных ветровыми и сейсмическими колебаниями мачты, движением ПРТК по пересеченной местности и пр. В связи с этим в статье рассмотрено общее решение задачи стохастической оценки параметров пространственной ориентации видеокамер в условиях как случайных колебаний мачты, так и произвольного характера движения ПРТК. Так как методы решения данной задачи на основе спутниковых измерений при высокой интенсивности естественных и искусственных радиопомех (способы формирования которых постоянно совершенствуются) не в состоянии обеспечить требуемую точность решения, то в основу предложенного подхода положено использование автономных средств измерения — инерциальных и неинерциальных. Но при их использовании возникает проблема построенияи стохастической оценки общей модели движения видеокамеры, сложность которой определяется произвольным движением ПРТК, случайными колебаниями мачты, помехами измеренияи др. В связи с нерешенностью данной проблемы на сегодняшний день в статье рассмотрен синтез как модели движения видеокамеры в самом общем случае, так и стохастической оценки ее параметров состояния. При этом разработанный алгоритм совместной оценки параметров пространственной ориентации видеокамеры, размещенной на мачте ПРТК, является инвариантным и к характеру движения мачты, и видеокамеры, и самого ПРТК, обеспечивая при этом устойчивость и требуемую точность оценивания при самых общих предположениях о характере помех чувствительных элементов используемого автономного измерительного комплекса. Результаты численного эксперимента позволяют сделать вывод о возможности практического применения предложенного подхода для решения задачи текущей пространственной ориентации ПРТК и размещенных на них видеокамер, причем с использованием недорогих автономных средств измерения.

  9. Мы разработали модель кормодобывания колонии медоносных пчел на основе уравнений «реакция – диффузия». Работающие пчелы передают информацию о своих источниках пищи с помощью танца, а соискатели работы в улье могут выбрать любой понравившийся им танец и, таким образом, присоединиться к эксплуатации соответствующего источника. Мы рассматриваем две стратегии выбора танцев: целенаправленную, когда пчелы анализируют информацию на танцполе и выбирают самый энергичный и длительный танец, отвечающий самому прибыльному источнику, и просто случайный выбор первого попавшегося танца. Моделирование показало, что наибольшую прибыль (приток пищи в улей) обеспечивает именно случайный выбор танца, как бы это парадоксально на первый взгляд ни звучало. Оптимизация прибыли каждым агентом под себя (целенаправленный выбор танцев) является скорее недостатком для колонии, а «неоптимальность» в выборе танца может быть результатом полезной эволюционной адаптации.

  10. Крючечникова А.Н., Левдик Т.Г., Браже А.Р.
    Моделирование морфологии астроцитов с применением алгоритма колонизации пространства
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 465-481

    В настоящей работе рассматривается феноменологический алгоритм генерации морфологии глиальных клеток мозга — астроцитов, основанный на морфометрических данных протоплазматических астроцитов и общих тенденциях развития данного типа клеток in vivo, описанных в литературе. Мы адаптировали алгоритм пространственной колонизации (Space Colonization Algorithm, SCA) для процедурной генерации полной астроцитарной морфологии. Используемые в генерации аттракторные точки распределялись в пространственном объеме в соответствии с плотностью распределения синапсов в ткани гиппокампа на первой неделе постнатального развития мозга крысы. Нами были проанализированы и сопоставлены данные реконструкций астроцитарных морфологий на разных этапах развития мозга с использованием таких методик и параметров, как анализ Шолля, число точек ветвления, число терминалей, общая длина дерева и максимальный порядок ветвления. Используя данные морфометрического анализа протоплазматических астроцитов животных разных возрастов, были подобраны необходимые параметры генерации для получения наиболее реалистичных трехмерных моделей морфологии клеток. Мы показали, что разработанный нами алгоритм позволяет не только получить геометрию отдельных клеток, например, для задач вычислительной биологии, но и воссоздать феномен доменной организации клеточной популяции. Доменная организация в ходе генерации морфологий возникает из-за конкуренции клеток за территорию и присвоения их отростками уникальных аттракторных точек, которые становятся недоступными для других клеток и их отростков. Кроме того, нами было разработано дополнение оригинального алгоритма, позволяющее производить генерацию морфологии в две фазы, имитируя двухстадийное развитие структуры астроцитов на первой и третьей-четвертой неделях постнатального развития мозга крыс. Для достижения этого результата мы прибегаем к введению двух типов аттракторов, чтобы разделить две различные стратегии роста во времени: быстрое исследование пространства слабоветвящимися отростками и созревание сложной морфологии за счет обильного ветвления. Мы предполагаем, что модификация алгоритма с введением динамической генерации аттракторов может объяснить процесс формирования тонких структур астроцитарной клетки.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.