Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование байпасного ламинарно-турбулентного перехода в рамках $k-\varepsilon$ подхода
Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 879-888Просмотров за год: 11. Цитирований: 8 (РИНЦ).Данная работа посвящена изучению возможности предсказать байпасный ламинарно-турбулентный переход с помощью несложной низкорейнольдсовой $k-\varepsilon$ модели турбулентности. Такая модель была разработана в ООО «ТЕСИС». Модель реализована в программном комплексе FlowVision. В статье обсуждаются идеи, воплощенные в этой модели. Возможность модели предсказывать ламинарно-турбулентный переход демонстрируется на известных тестовых задач T3B, T3A, T3A-.
-
FlowVision: индустриальная вычислительная гидродинамика
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 5-20Просмотров за год: 30. Цитирований: 8 (РИНЦ).В работе представлена новая версия программного комплекса FlowVision, предназначенного для автоматизации инженерных расчетов в области вычислительной гидродинамики: FlowVision 3.09.05. Программный комплекс (ПК) FlowVision используется для решения различных прикладных задач в различных областях промышленности. Его популярность основана на том, что он позволяет решать сложные нетрадиционные задачи, находящиеся на стыке различных дисциплин, с одной стороны, и, с другой стороны, на парадигме полной автоматизации таких трудоемких для инженера процессов, как построение расчетной сетки. FlowVision — это программный комплекс, полностью отчуждаемый от разработчиков. Он имеет развитый графический интерфейс, систему задания расчетного проекта и систему визуализации течений различными методами — от построения контуров (для скалярных переменных) и векторов (для векторных переменных) на плоскостях и поверхностях до объемной визуализации расчетных данных. Кроме этого, ПК FlowVision предоставляет пользователю возможность вычислять интегральные характеристики на поверхностях и в ограниченных объемах.
ПК основан на конечно-объемном подходе к аппроксимации основных уравнений движения жидкости. В нем реализованы явный и неявный методы решения этих уравнений. ПК имеет автоматический построитель неструктурированной сетки с возможностью ее локальной динамической адаптации. В ПК реализован двухуровневый параллелизм, позволяющий эффективно проводить расчеты на компьютерах, имеющих распределенную и общую память одновременно. FlowVision обладает широким спектром физико-математических моделей: турбулентности (URANS, LES, ILES), горения, массопереноса с учетом химических превращений и радиоактивного распада, электрогидродинамики.
FlowVision позволяет решать задачи движения жидкостей со скоростями, соответствующими несжимаемому или гиперзвуковому режимам за счет использования все-скоростного метода расщепления по физическим переменным для решения уравнений Навье–Стокса. FlowVision позволяет решать междисциплинарные задачи с использованием различных средств моделирования, например: моделировать многофазные течения методом VOF, обтекание подвижных тел с помощью эйлерова подхода при неподвижной расчетной сетке, моделировать вращающиеся машины с использованием метода скользящей сетки, решать задачи взаимодействия жидкости и конструкций методом двухстороннего сопряжения FlowVision с конечно-элементными кодами. В данной работе показаны примеры решения задач-вызовов: a) посадка космического корабля на воду при торможении ракетными двигателями, где есть граница раздела «воздух–вода», подвижные тела и взаимодействие сверхзвуковой струи газа с границей раздела «вода–воздух»; б) моделирование работы человеческого сердца с искусственными и живыми клапанами, спроектированными на базе томографических исследований, с использованием двухстороннего сопряжения «жидкостной» расчетной области с конечно-элементной моделью мышц сердца.
-
Обзор текущего состояния квантовых технологий
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 165-179Просмотров за год: 56.Сегодня квантовые технологии могут получить новый виток развития, что, наверняка, даст возможность получить решения для многочисленных задач, которые ранее не поддавались решению в рамках традиционных парадигм и вычислительных моделей. Все человечество стоит у порога так называемой второй квантовой революции, и ее краткосрочные и отдаленные последствия затронут практически все сферы жизни глобального общества. Свое непосредственное развитие получат такие направления и отрасли науки и техники, как материаловедение, нанотехнология, фармакология и биохимия вообще, моделирование хаотичных динамических процессов (ядерные взрывы, турбулентные потоки, погода и долгосрочные климатические явления) и т. д., а также решение любых задач, которые сводятся к перемножению матриц больших размеров (в частности, моделирование квантовых систем). Однако вместе с необычайными возможностями квантовые технологии несут с собой и определенные риски и угрозы, в частности слом всех информационных систем, основанных на современных достижениях криптографии, что повлечет за собой практически полное разрушение секретности, глобальный финансовый кризис из-за разрушения банковской сферы и компрометации всех каналов связи. Даже несмотря на то, что уже сегодня разрабатываются методы так называемой постквантовой криптографии, некоторые риски еще необходимо осознать, так как не все долгосрочные последствия могут быть просчитаны. Вместе с тем ко всему перечисленному надо быть готовым, в том числе при помощи подготовки специалистов, работающих в области квантовых технологий и понимающих все их аспекты, новые возможности, риски и угрозы. В связи с этим в настоящей статье приводится краткое описание текущего состояния квантовых технологий, а именно квантовой сенсорики, передачи информации при помощи квантовых протоколов, универсального квантового компьютера (аппаратное обеспечение) и квантовых вычислений, основанных на квантовых алгоритмов (программное обеспечение). Для всего перечисленного приводятся прогнозы развития в части воздействия на различные сферы человеческой цивилизации.
-
Моделирование турбулентных сжимаемых течений в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 805-825В работе обсуждается возможность моделирования турбулентных сжимаемых течений газа с использованием моделей турбулентности $k-\varepsilon$ стандартная (KES), $k-\varepsilon$ FlowVision (KEFV) и SST $k-\omega$. Представлена новая версия модели турбулентности KEFV. Показаны результаты ее тестирования. Проведено численное исследование истечения сверхзвуковой перерасширенной струи из конического сопла в безграничное пространство. Результаты сравниваются с экспериментальными данными. Демонстрируется зависимость результатов от сетки. Демонстрируется зависимость результатов от турбулентности, задаваемой на входе в сопло. Делается вывод о том, что в двухпараметрических моделях турбулентности необходимо учитывать сжимаемость. Для этого подходит простой способ, предложенный Вилкоксом в 1994 г. В результате область применимости трех указанных двухпараметрических моделей заметно расширяется. Предлагаются конкретные значения констант, управляющих учетом сжимаемости в подходе Вилкокса. Эти значения рекомендуется задавать в моделях KES, KEFV и SST при моделировании сжимаемых течений.
Дополнительно рассмотрен вопрос о том, как получать правильные характеристики сверхзвукового турбулентного течения с использованием двухпараметрических моделей турбулентности. Расчеты на разных сетках показали, что при задании ламинарного потока на входе в сопло и пристеночных функций на его поверхностях ядро потока остается ламинарным вплоть до 5-й бочки. Для получения правильных характеристик нужно либо на входе в расчетную область задавать два параметра, характеризующие турбулентность втекающего потока, либо задавать «затравочную» турбулентность в ограниченной области на выходе из сопла, охватывающей зону предполагаемого ламинарно-турбулентного перехода. Последняя возможность реализована в модели KEFV.
-
К вопросу об определении ядра концевого вихря
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 9-27Дается обзор критериев, используемых при идентификации концевых вихрей, сходящих с несущих поверхностей летательного аппарата. В качестве основного метода идентификации вихря используется $Q$-критерий, в соответствии с которым ядро вихря ограничено поверхностью, на которой норма тензора завихренности равна норме тензора сдвиговых деформаций. При этом внутри ядра вихря должны выполняться следующие условия: (i) ненулевое значение нормы тензора завихренности, (ii) геометрия ядра вихря должна удовлетворять условию галилеевой инвариантности. На основе аналитических моделей вихря дается определение понятия центра двумерного вихря как точки, в которой $Q$-распределение принимает максимальное значение и много больше нормы тензора сдвиговых деформаций (для осесимметричного 2D-вихря норма тензора сдвиговых деформаций в центре вихря стремится к нулю). Поскольку необходимость существования оси вихря обсуждается в работах различных авторов и выглядит достаточно естественным требованием при анализе концевых вихрей, упомянутые выше условия (i), (ii) дополнены условием (iii): ядро вихря в трехмерном потоке должно содержать ось вихря. Анализируются течения, имеющие в 2D-сечениях осевую симметрию, а также форму ядра вихря, отличающуюся от окружности (в частности, эллиптического вида). Показывается, что в этом случае с использованием $Q$-распределения можно не только определить область ядра вихря, но и выделить ось ядра вихря. Для иллюстрации введенных понятий используются результаты численного моделирования обтекания крыла конечного размаха на базе решения осредненных по Рейнольдсу стационарных уравнений Навье – Стокса (RANS). Замыкание уравнений Навье – Стокса осуществлялось с использованием модели турбулентности $k-\omega$.
-
Верификация расчетных характеристик сверхзвуковых турбулентных струй
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 21-35Просмотров за год: 43.В статье приводятся результаты верификационных расчетов в программном комплексе вычислительной аэро-, гидродинамики FlowVision характеристик сверхзвуковых турбулентных струй. Численное моделирование в статье охватывает несколько известных экспериментов по исследованию сверхзвуковых струй, находящихся в свободном доступе. Представленные тестовые случаи включают в себя тесты Сейнера с числом Маха на срезе $M = 2$ при расчетном $(n = 1)$ и нерасчетном $(n = 1.47)$ истечении из сопла в широком диапазоне температур газа. В работе также проведен численный эксперимент по распространению сверхзвуковой струи в спутном сверхзвуковом потоке $M = 2.2$. Для данного теста заданы параметры, определенные в эксперименте Putnam: степень понижения давления в сопле $\mathrm{NPR} = 8.12$ и полная температура $T = 317 \, \mathrm{K}$.
Показано сравнение расчетов FlowVision с экспериментальными и полученными в других расчетных кодах данными. Наилучшее совпадение с экспериментом Сейнера среди рассмотренных моделей турбулентности получено при использовании стандартной $k–\varepsilon$ модели турбулентности с установленной поправкой на сжимаемость по модели Wilcox. Достигнуто согласование с экспериментальными данными на дальнем следе до 7 % по скорости потока на оси сопла. Для струи в спутном потоке расчетная характеристика (число Маха) отличается на 3 % от экспериментальной.
В работе определены общие рекомендации к построению методики моделирования FlowVision сверхзвуковых турбулентных струй. В ходе исследования сходимости по сетке получены оптимальные размеры ячеек расчетной сетки: для расчетного истечения достаточно 40 ячеек по радиусу сопла и в области формирования струи, а для нерасчетных режимов необходимо не менее 80 ячеек по радиусу для точного моделирования ударно-волновой структуры вблизи выхода из сопла.
Влияние применяемых моделей турбулентности показано на примере расчета теста Сейнера. SST-модель турбулентности, применяемая в FlowVision, существенно занижает скорость на оси сопла, для расчета струй данная модель не рекомендуется даже для предварительных оценок. Стандартная $k–\varepsilon$ модель без учета сжимаемости также несколько занижает скорость газа. Модель турбулентности KEFV, разработанная для FlowVision, показывает хорошее согласование и несколько завышает «дальнобойность» струи. И наилучшее совпадение с экспериментом по исследуемым характеристикам турбулентных струй получено при расчетах на стандартной $k–\varepsilon$ модели с учетом сжимаемости, соответствующей модели Wilcox. Представленная методика может быть взята за основу при моделировании истечения из сверхзвуковых сопел более сложной геометрии.
-
Применение схемы«КАБАРЕ» к задаче об эволюции свободного сдвигового течения
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 881-903В настоящей работе приводятся результаты численного моделирования свободного сдвигового течения с помощью схемы «КАБАРЕ», реализованной в приближении слабой сжимаемости. Анализ схемы проводится на основе изучения свойств неустойчивости Кельвина–Гельмгольца и порождаемой ею двумерной турбулентности, с использованием интегральных кривых кинетической энергии и энстрофии, картин временной эволюции завихренности, спектров энстрофии и энергии, а также дисперсионного соотношения для инкремента неустойчивости. Расчеты проводились для числа Рейнольдса $\text{Re} = 4 \times 10^5$, на квадратных последовательно сгущаемых сетках в диапазоне $128^2-2048^2$ ячеек. Внимание уделено проблеме «недоразрешенности слоев», проявляющейся в возникновении лишнего вихря при свертывании двух вихревых листов (слоев вихревой пелены). Данное явление существует только на грубых сетках $(128^2)$, однако, полностью симметричная картина эволюции завихренности начинает наблюдаться только при переходе к сетке $1024^2$ ячеек. Размерные оценки отношения вихрей на границах инерционного интервала показывают, что наиболее подробная сетка $2048^2$ ячеек оказывается достаточной для качественного отображения мелкомасштабных сгустков завихренности. Тем не менее можно говорить о достижении хорошей сходимости при отображении крупномасштабных структур. Эволюция турбулентности, в полном соответствии с теоретическими представлениями, приводит к появлению крупных вихрей, в которых сосредотачивается вся кинетическая энергия движения, и уединенных мелкомасштабных образований. Последние обладают свойствами когерентных структур, выживая в процессе нитеобразования (филаментации), и практически не взаимодействуют с вихрями других масштабов. Обсуждение диссипативных характеристик схемы ведется на основе анализа графиков скорости диссипации кинетической энергии, вычисляемой непосредственно, а также на основе теоретических соотношений для моделей несжимаемой жидкости (по кривым энстрофии) и сжимаемого газа (по влиянию тензора скоростей деформации и эффектов дилатации). Асимптотическое поведение каскадов кинетической энергии и энстрофии подчиняется реализующимся в двумерной турбулентности соотношениям $E(k) \propto k^{−3}$, $\omega^2(k) \propto k^{−1}$. Исследование зависимости инкремента неустойчивости от безразмерного волнового числа показывает хорошее согласие с данными других исследователей, вместе с тем часто используемый способ расчета инкремента неустойчивости не всегда оказывается достаточно точным, вследствие чего была предложена его модификация.
Таким образом, реализованная схема, отличаясь малой диссипативностью и хорошим вихреразрешением, оказывается вполне конкурентоспособной в сравнении с методами высокого порядка точности.
Ключевые слова: численная схема «КАБАРЕ», слабосжимаемая жидкость, неустойчивость Кельвина–Гельгольца, завихренность, энстрофия, инкремент неустойчивости, недоразрешаемые слои, «паразитный» вихрь, свертывание, инерционный интервал, когерентные структуры, филаментация, скорость диссипации, дилатация.Просмотров за год: 17.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"