Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'метод регуляризации':
Найдено статей: 23
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Просмотров за год: 27.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Просмотров за год: 29.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  6. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1033-1035
  7. Акиндинов Г.Д., Матюхин В.В., Криворотько О.И.
    Численное решение обратной задачи для уравнения гиперболической теплопроводности с малым параметром
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 245-258

    В данной работе приведен алгоритм численного решения обратной начально-краевой задачи для гиперболического уравнения с малым параметром перед второй производной по времени, которая состоит в нахождении начального распределения по заданному конечному. Данный алгоритм позволяет для заданной наперед точности получить решение задачи (в допустимых пределах точности). Данный алгоритм позволяет избежать сложностей, аналогичных случаю с уравнением теплопроводности с обращенным временем. Предложенный алгоритм позволяет подобрать оптимальный размер конечно-разностной схемы путем обучения на относительно больших разбиениях сетки и малом числе итераций градиентного метода. Предложенный алгоритм позволяет получить оценку для константы Липшица градиента целевого функционала. Также представлен способ оптимального выбора малого параметра при второй производной для ускорения решения задачи. Данный подход может быть применен и в других задачах с похожей структурой, например в решении уравнений состояния плазмы, в социальных процессах или в различных биологических задачах. Новизна данной работы заключается в разработке оптимальной процедуры выбора размера шага путем применения экстраполяции Ричардсона и обучения на малых размерах сетки для решения задач оптимизации с неточным градиентом в обратных задачах.

  8. Гасников А.В., Ковалёв Д.А.
    Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 305-314

    В данной работе приводятся нижние оценки скорости сходимости для класса численных методов выпуклой оптимизации первого порядка и выше, т. е. использующих градиент и старшие производные. Обсуждаются вопросы достижимости данных оценок. Приведенные в статье оценки замыкают известные на данный момент результаты в этой области. Отметим, что замыкание осуществляется без должного обоснования, поэтому в той общности, в которой данные оценки приведены в статье, их стоит понимать как гипотезу. Опишембо лее точно основной результат работы. Пожалуй, наиболее известнымм етодом второго порядка является метод Ньютона, использующий информацию о градиенте и матрице Гессе оптимизируемой функции. Однако даже для сильно выпуклых функций метод Ньютона сходится лишь локально. Глобальная сходимость метода Ньютона обеспечивается с помощью кубической регуляризации оптимизируемой на каждом шаге квадратичной модели функции [Nesterov, Polyak, 2006]. Сложность решения такой вспомогательной задачи сопоставима со сложностью итерации обычного метода Ньютона, т. е. эквивалентна по порядку сложности обращения матрицы Гессе оптимизируемой функции. В 2008 году Ю. Е. Нестеровымбыл предложен ускоренный вариант метода Ньютона с кубической регуляризацией [Nesterov, 2008]. В 2013 г. Monteiro – Svaiter сумели улучшить оценку глобальной сходимости ускоренного метода с кубической регуляризацией [Monteiro, Svaiter, 2013]. В 2017 году Arjevani – Shamir – Shiff показали, что оценка Monteiro – Svaiter оптимальна (не может быть улучшена более чем на логарифми- ческий множитель на классе методов 2-го порядка) [Arjevani et al., 2017]. Также удалось получить вид нижних оценок для методов порядка $p ≥ 2$ для задач выпуклой оптимизации. Отметим, что при этом для сильно выпуклых функций нижние оценки были получены только для методов первого и второго порядка. В 2018 году Ю. Е. Нестеров для выпуклых задач оптимизации предложил методы 3-го порядка, которые имеют сложность итерации сопоставимую со сложностью итерации метода Ньютона и сходятся почти по установленным нижним оценкам [Nesterov, 2018]. Таким образом, было показано, что методы высокого порядка вполне могут быть практичными. В данной работе приводятся нижние оценки для методов высокого порядка $p ≥ 3$ для сильно выпуклых задач безусловной оптимизации. Работа также может рассматриваться как небольшой обзор современного состояния развития численных методов выпуклой оптимизации высокого порядка.

    Просмотров за год: 21. Цитирований: 1 (РИНЦ).
  9. Рукавишников В.А., Мосолапов А.О.
    Весовой векторный метод конечных элементов и его приложения
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 71-86

    Математические модели многих естественных процессов описываются дифференциальными уравнениями с особенностями решения. Классические численные методы для нахождения приближенного решения таких задач оказываются неэффективными. В настоящей работе рассмотрена краевая задача для векторного волнового уравнения в двумерной L-образной области. Наличие входящего угла величиной  $3\pi/2$ на границе расчетной области обусловливает сильную сингулярность задачи, то есть ее решение не принадлежит пространству Соболева $H^1$, в результате чего классические и специализированные численные методы имеют скорость сходимости ниже чем $O(h)$. Поэтому в работе введено специальное весовое множество вектор-функций. В этом множестве решение рассматриваемой краевой задачи определено как $R_ν$-обобщенное.

    Для численного нахождения $R_ν$-обобщенного решения построен весовой векторный метод конечных элементов. Основным отличием этого метода является введение в базисные функции в качестве сомножителя специальной весовой функции в степени, определяемой свойствами решения исходной краевой задачи. Это позволило существенно повысить скорость сходимости приближенного решения к точному при измельчении конечноэлементной сетки. Кроме того, введенные базисные функции соленоидальны, что обеспечило точный учет условия соленоидальности искомого решения и предотвратило появление ложных численных решений.

    Представлены результаты численного эксперимента для серии модельных задач различных типов: для задач, решение которых содержит только сингулярную составляющую, и для задач, решение которых содержит как сингулярную, так и регулярную составляющие. Результаты численного анализа показали, что при измельчении конечноэлементной сетки скорость сходимости построенного весового векторного метода конечных элементов составляет $O(h)$, что по порядку степени в полтора раза выше, чем в разработанных к настоящему времени специализированных методах решения рассматриваемой задачи: методе сингулярных дополнений и методе регуляризации. Другие особенности построенного метода — его алгоритмическая простота и естественность определения решения, что является преимуществом при проведении численных расчетов.

    Просмотров за год: 37.
  10. Забелло К.К., Гарбарук А.В.
    Исследование точности метода решеточных уравнений Больцмана при расчете распространения акустических волн
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1069-1081

    В статье проводится систематическое исследование возможностей метода решеточных уравнений Больцмана (lattice Boltzmann method, LBM или РУБ) для описания распространения акустических волн. Рассмотрена задача о распространении возмущений от точечного гармонического источника акустических возмущений в неограниченном пространстве как в неподвижной среде (число Маха $M=0$), так и при наличии набегающего потока (число Маха $M=0{,}2$). Обе рассмотренные задачи имеют аналитическое решение в приближении линейной акустики, что позволяет количественно оценить точность численного метода.

    Численная реализация осуществлена с использованием двумерной модели скоростей D2Q9 и оператора столкновений Бхатнагара – Гросса – Крука (BGK). Источник колебаний задавался согласно схеме Gou, а возникающий от источника паразитный шум в моментах старших порядков убирался за счет использования процедуры регуляризации функций распределения. Для минимизации отражений от границ расчетной области использовался гибридный подход, основанный на совместном использовании характеристических граничных условий на основе инвариантов Римана и поглощающих PML-слоев (perfectly matched layer) с параболическим профилем затухания.

    В ходе работы проведен детальный анализ влияния вычислительных параметров метода на точность расчета. Исследована зависимость погрешности от толщины PML-слоя ($L_{\text{PML}}^{}$) и максимального коэффициента демпфирования ($\sigma_{\max}^{}$), безразмерной амплитуды источника ($Q'_0$) и шага расчетной сетки. Показано, что метод РУБ применим для моделирования распространения акустических волн и обладает вторым порядком точности. Установлено, что для достижения высокой точности расчета (относительная погрешность давления — не более $1\,\%$) достаточно пространственного разрешения в $20$ точек на длину волны ($\lambda$). Определены минимальные эффективные параметры PML-слоя: $\sigma_{\max}^{}\geqslant 0{,}02$ и $L_{\text{PML}}^{} \geqslant 2\lambda$, обеспечивающие отсутствие отражения от границ расчетной области. Также продемонстрировано, что при амплитудах источника $Q_0' \geqslant 0{,}1$ влияние нелинейных эффектов становится существенным по сравнению с другими источниками погрешности.

Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.