Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'метод моделирования':
Найдено статей: 368
  1. Аристов В.В., Строганов А.В., Ястребов А.Д.
    Применение модели кинетического типа для изучения пространственного распространения COVID-19
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627

    Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.

  2. Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

  3. Котлярова Е.В., Северилов П.А., Ивченков Я.П., Мокров П.В., Чеканов М.О., Гасникова Е.В., Шароватова Ю.И.
    Ускорение работы двухстадийной модели равновесного распределения потоков по сети
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 343-355

    В работе приведены возможные улучшения двухстадийной модели равновесного распределения транспортных потоков, повышающие качество детализации моделирования и скорость вычисления алгоритмов. Модель состоит из двух блоков, первый блок — модель расчета матрицы корреспонденций, второй блок — модель равновесного распределения транспортных потоков по путям. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Более подробно теория и эксперименты по данной модели были описаны в предыдущих работах авторов. В этой статье в первую очередь рассмотрена возможность сокращения вычислительного времени алгоритма расчета кратчайших путей (в модели стабильной динамики, равновесно распределяющей потоки). В исходном варианте эта задача была выполнена с помощью алгоритма Дийкстры, но, так как после каждой итерации блока распределения транспортных потоков, время, требующееся для прохода по ребру, изменяется не на всех ребрах (и если изменяется, то очень незначительно), во многом этот алгоритм был избыточен. Поэтому были проведены эксперименты с более новым методом, учитывающим подобные особенности, и приведен краткий обзор других ускоряющих подходов для будущих исследований. Эксперименты показали, что в некоторых случаях использование выбранного T-SWSF-алгоритма действительно сокращает вычислительное время. Во вторую очередь в блоке восстановления матрицы корреспонденций алгоритм Синхорна был заменен на алгоритм ускоренного Синхорна (или AAM-алгоритм), что, к сожалению, не показало ожидаемых результатов, расчетное время не изменилось. Инак онец, в третьем и финальном разделе приведена визуализация результатов экспериментов по добавлению платных дорог в двухстадийную модель, что помогло сократить количество перегруженных ребер в сети. Также во введении кратко описана мотивация данных исследований, приведено описание работы двухстадийной модели, а также на маленьком примере с двумя городами разобрано, как с ее помощью выполняется поиск равновесия.

  4. Лукьянченко П.П., Данилов А.М., Бугаев А.С., Горбунов Е.И., Пашков Р.А., Ильина П.Г., Гаджимирзаев Ш.М.
    Подход к оценке динамики уровня консолидированности отраcли
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 129-140

    В данной статье нами предложен новый подход к анализу эконометрических параметров отрасли для уровня консолидированности отрасли. Исследование базируется на простой модели управления отраслью в соответствии с моделью из теории автоматического управления. Состояние отрасли оценивается на основе ежеквартальных эконометрических параметров получаемых в обезличенном виде от каждой компании отрасли через налогового регулятора.

    Предложен подход к анализу отрасли, который не предусматривает отслеживания эконометрических показателей каждой компании, но рассматривает параметры всех компаний отрасли, как единого объекта.

    Ежеквартальными эконометрическими параметрами для каждой компании отрасли являются доход, количество работников, налоги и сборы, уплачиваемые в бюджет, доход от продажи лицензионных прав на программное обеспечение.

    Был использован ABC-метод анализа модифицированный до ABCD-метода (D — компании с нулевым вкладом в соответствующую отраслевую метрику) для различных отраслевых метрик. Были построены Парето-кривые для множества эконометрических параметров отрасли.

    Для оценки степени монополизированности отрасли был рассчитан индекс Херфиндаля – Хиршмана (ИХХ) для наиболее чувствительных метрик отрасли. С использованием ИХХ было показано что пандемия COVID-19 не привела к существенным изменениям уровня монополизированности российской ИТ-отрасли.

    В качестве наиболее наглядного подхода к отображению отрасли было предложено использовать диаграмму рассеяния в сочетании с присвоением компаниям отрасли цвета в соответствии с их позицией на Парето-кривой. Также продемонстрирован эффект влияния процедуры аккредитации путем отображения отрасли в формате диаграммы рассеяния c красно-черным отображением аккредитованных и неаккредитованных компаний, соответственно.

    И заключительным результатом, отраженным в статье является предложение использования процедуры сквозной идентификации при организации цепочек поставок программного обеспечения с целью контроля структуры рынка программного обеспечения. Этот подход позволяет избежать множественного учета при продаже лицензий на программное обеспечение в рамках цепочек поставок.

    Результаты работы могут быть положены в основу дальнейшего анализа ИТ-отрасли и перехода к агентному моделированию отрасли.

  5. Абшаев М.Т., Абшаев А.М., Аксёнов А.А., Фишер Ю.В., Щеляев А.Е.
    Результаты моделирования полевых экспериментов по созданию восходящих потоков для развития искусственных облаков и осадков
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 941-956

    Перспективным методом повышения количества осадков в засушливом климате является способ создания вертикальной высокотемпературной струи, насыщенной гигроскопическим аэрозолем. Такая установка позволяет создавать искусственные облака с возможностью образования осадков в безоблачной атмосфере, в отличие от традиционных способов искусственного увеличения осадков, в которых предусматривается повышение эффективности осадко-образования только в естественных облаках путем их засева ядрами кристаллизации и конденсации. Для увеличения мощности струи добавляются хлорид кальция, карбамид, пищевая соль в виде грубодисперсного аэрозоля, а также нанопорошок NaCl/TiO2, который способен конденсировать значительно больше водяного пара, чем перечисленные типы аэрозолей. Дисперсные включения в струе также являются центрами кристаллизации и конденсации в создаваемом облаке для повышения возможности осадкообразования. Для моделирования конвективных течений в атмосфере применяется математическая модель атмосферных течений большого масштаба FlowVision, решение уравнений движения, энергии и массопереноса проводится в относительных переменных. Рассматриваемая постановка задачи разделена на две части: модель начальной струи и постановка атмосферных течений большого масштаба FlowVision. Нижняя область, где происходит течение начальной высокоскоростной струи, моделируется в сжимаемой постановке с решением уравнения энергии относительно полной энтальпии. Данное разделение задачи на две отдельные подобласти необходимо, чтобы корректно провести численный расчет начальной турбулентной струи при высокой скорости (M > 0,3). Приводятся основные математические зависимости модели. С использованием представленной модели проведены численные эксперименты, для исходных данных взяты экспериментальные данные из натурных испытаний установки по созданию искусственных облаков, проведенные в Объединенных Арабских Эмиратах. Получено хорошее согласие с экспериментом: в 55% проведенных расчетов значение вертикальной скорости на высоте 400 м (более 2 м/с) и высота подъема струи (более 600 м) находятся в пределах погрешности 30% от экспериментальных характеристик, а в 30% расчетах — полностью согласуются с экспериментом. Результаты численного моделирования позволяют оценить возможность использования метода высокоскоростной струи для стимулирования искусственной конвекции и, в конечном итоге, для создания осадков. Расчеты проведены с использованием программного комплекса FlowVision на суперкомпьютере «Торнадо ЮУрГУ».

  6. В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.

    Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.

  7. Беляев А.В.
    Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973

    Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.

  8. При моделировании турбулентных течений в практических приложениях часто приходится проводить серии расчетов для тел близкой топологии. Например, тел, отличающихся формой обтекателя. Применение сверточных нейронных сетей позволяет сократить количество расчетов серии, восстановив часть из них по уже проведенным расчетам. В работе предлагается метод, позволяющий применить сверточную нейронную сеть независимо от способа построения вычислительной сетки. Для этого проводится переинтерполяция поля течения на равномерную сетку вместе с самим телом. Геометрия тела задается с помощью функции расстояния со знаком и маскирования. Восстановление поля течения на основании части расчетов для схожих геометрий проводится с помощью нейронной сети типа UNet с пространственным механизмом внимания. Разрешение пристенной области, являющееся критически важным условием при турбулентном моделировании, производится на основании уравнений, полученных в методе пристенной декомпозиции.

    Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различным скруглением при фиксированных параметрах набегающего потока с числом Рейнольдса $Re = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. Проводится сравнение полей течения, профилей скорости и трения на стенке, полученных суррогатной моделью и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают перспективность предлагаемого подхода. В частности, было показано, что даже в случае использования модели на максимально допустимых границах ее применимости трение может быть получено с точностью до 90%. Также в работе проводится анализ построенной архитектуры нейронной сети. Полученная суррогатная модель сравнивается с альтернативными моделями, построенными на основании вариационного автоэнкодера или метода главных компонент с использованием радиальных базисных функций. На основании этого сравнения демонстрируются преимущества предложенного метода.

  9. Попинако А.В.
    Молекулярное моделирование и динамика комплексов серотонинового 5-HT3 рецептора с лигандами
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 329-334

    Вопрос взаимодействия определенного рецептора с лигандами является ключевым в области клеточной сигнализации, но решается он на молекулярном уровне. Для улучшения понимания молекулярных механизмов взаимодействия серотонинового рецептора с лигандами были применены различные биофизические методы компьютерного моделирования. Модель трехмерной структуры надмембранного домена серотонинового 5-HT3 рецептора человека была построена по гомологии с никотиновым ацетилхолиновым рецептором nAChR (PDB ID: 2BG9). Методом докинга были получены комплексы 5-HT3 рецептора с лигандами. Методом молекулярной динамики исследовано взаимодействие серотонинового 5-HT3 рецептора с лигандами и показана роль различных факторов в стабилизации комплексов.

    Цитирований: 1 (РИНЦ).
  10. Будянский А.В., Цибулин В.Г.
    Моделирование пространственно-временной миграции близкородственных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488

    Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.

    Просмотров за год: 6. Цитирований: 9 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.