Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'методы оптимизации':
Найдено статей: 116
  1. Юдин Н.Е., Гасников А.В.
    Регуляризация и ускорение метода Гаусса – Ньютона
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840

    Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.

  2. Богданов А.В., Тхурейн Киав Л.
    Оптимизация запросов в распределенных базах данных и распространение технологии, (облачных вычислений)
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 649-655

    Оптимизация это сердце для реляционных СУБД. Она анализирует SQL заявления и определяет наиболее эффективный план доступа для удовлетворения каждого запроса. Оптимизация решает эту задачу и анализирует SQL заявления определяя, какие таблицы и столбцы должны быть доступны. Затем запросы информационной системы и статистические данные, хранящиеся в системном каталоге, определяют наилучший метод решения задач, необходимых для удовлетворения этой просьбы.

    Просмотров за год: 1.
  3. Алгоритмы декомпозиции являются методами решения NP-трудных задач дискретной оптимизации (ДО). В этой статье демонстрируется один из перспективных методов, использующих разреженность матриц, — локальной элиминационный алгоритм в параллельной интерпретации (ЛЭАП). Это алгоритм структурной из декомпозиции на основе графа, который позволяет найти решение поэтапно таким образом, что каждый последующих этапов использует результаты предыдущих этапов. В то же время ЛЭАП сильно зависит от порядка элиминации, который фактически является стадиями решения. Также в статье рассматриваются древовидный и блочный тип распараллеливания для ЛЭАП и необходимые процессы их реализации.

    Просмотров за год: 1.
  4. В работе рассматриваются возможности реализации крупноблочных схем метода ветвей и границ для решения частично целочисленных задач линейного программирования. В качестве основы берется пакет оптимизации с открытым исходным кодом CBC. Анализируется возможность использования пакета для реализации крупноблочной схемы метода ветвей и границ. Система реализуется с использованием языка Erlang. Проводятся численные эксперименты на основе задачи о коммивояжере, показывающие заметное ускорение распределенной схемы решения задачи по сравнению с единичным однопоточным экземпляром пакета.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  5. Молекулярно-динамические методы, использующие силовое поле ReaxFF, позволяют получать достаточно хорошие результаты при моделировании больших многокомпонентных химически-реактивных систем. Здесь представлены алгоритм поиска оптимальных параметров силового поля ReaxFF для произвольных химических систем, а также его реализация. Метод основан на способе многомерного поиска глобального минимума, предложенном Р. Г. Стронгиным. Алгоритм хорошо масштабируемый и хорошо подходит для работы на параллельных вычислительных кластерах.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  6. Дегтярев А.Б., Ежакова Т.Р., Храмушин В.Н.
    Алгоритмическое построение явных численных схем и визуализация объектов и процессов в вычислительном эксперименте в гидромеханике
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 767-774

    В работе рассматриваются проектные и поверочные этапы, в разработке сложных вычислительных алгоритмов для создания прямых вычислительных экспериментов в гидромеханике. В моделировании физических полей и нестационарных процессов механики сплошных сред желательно опираться на строгие правила конструирования числовых объектов и связанных с ними вычислительных алгоритмов. Синтез адаптивных числовых объектов и эффективных арифметико-логических операций может послужить оптимизации всей вычислительной задачи, при условии строго следования и соблюдения исходных законов гидромеханики. Возможность использования троичной логики позволяет разрешить некоторые противоречия функционального и декларативного программирования в реализации чисто прикладных задач механики. Аналогичные проектные решения приводят к новым численным схемам тензорной математики, которые позволяют оптимизировать эффективность и обосновывать корректность результатов моделирования. Наиболее важным следствием является возможность использования интерактивных графических методов для визуализации промежуточных результатов моделирования, а также для управляемого воздействия на ход вычислительного эксперимента под контролем инженеров аэрогидромехаников–исследователей.

    Просмотров за год: 1.
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.