Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О спектральных свойствах одного несамосопряженного разностного оператора
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 143-150Рассмотрена задача на собственные значения для несамосопряжённого разностного оператора с переменным коэффициентом. Особенность задачи заключается в нелокальных граничных условиях специального вида, которым удовлетворяет решение. В весьма общих предположениях относительно переменного коэффициента определена кратность собственных чисел, построена область локализации спектра оператора.
Ключевые слова: задача на собственные значения, несамосопряжённый разностный оператор.Просмотров за год: 1. Цитирований: 2 (РИНЦ). -
Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 2
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 547-566Просмотров за год: 6.Во второй части статьи, носящей более прикладной характер, завершается рассмотрение трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). На нескольких примерах, относящихся к гексагональной сетке, показана специфика такого решения и подтверждаются выводы первой части, в частности о выполнении свойства консервативности и эффекте избыточной гексагональной симметрии (ИГС).
При решении задачи Неймана для колебаний круглой мембраны показана критичность требований к дискретизации условий для граничных КА-ячеек. Для квазиодномерной задачи «диффузия в полупространство» сравниваются КА-расчеты, проводимые по простой схеме и с использованием обобщенного блочно-поворотного механизма Марголуса. При решении смешанной задачи для классического случая колебания круглой мембраны с закрепленными концами показано, что одновременное применение метода Кранка–Николсон и учет членов второго порядка позволяет избежать ИГС-эффекта, наблюдаемого нами для более простой схемы. С точки зрения КА центральное место занимает уравнение диффузии, на пути решения которого на бесконечных временах находится решение краевой задачи для уравнения Лапласа, а путем введения вектор-переменной становится разрешимо волновое уравнение (по крайней мере скалярное).
На примере центрально-симметричной задачи Неймана продемонстрирован новый способ введения пространственных производных в postfix-процедуру КА, отражающую временные производные (основанием является уравнение непрерывности). Для случая центральной симметрии эмпирически найдено значение константы, связывающее эти производные. Показано, что препятствием к применению КА-методов для таких задач являются низкая скорость сходимости и точность, лимитируемая точностью дискретизации границ, а не формальной точностью метода (4-й порядок); наша рекомендация состоит в использовании техники multigrid. При решении квазиодномерного уравнения диффузии (двумерным КА) показано, что блочно-поворотный КА (по механизму Марголуса) более эффективен, чем простой КА.
-
Современные методы математического моделирования кровотока c помощью осредненных моделей
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 581-604Просмотров за год: 62. Цитирований: 2 (РИНЦ).Изучение физиологических и патофизиологических процессов, связанных с системой кровообращения, является на сегодняшний день актуальной темой многих исследований. В данной работе рассматривается ряд подходов к математическому моделированию кровотока, основанных на пространственном осреднении и/или использующих стационарное приближение. Обсуждаются допущения и предположения, ограничивающие область применения моделей такого рода. Приводятся наиболее распространенные математические постановки задач и кратко описываются методы их численного решения. В первой части обсуждаются модели, основанные на полном пространственном осреднении и/или использующие стационарное приближение. Один из наиболее распространенных на сегодняшний день подходов состоит в проведении аналогий между течением вязкой несжимаемой жидкости в эластичных трубках и электрическим током в цепи. Такие модели используются не только сами по себе, но и как способ постановки граничных условий в моделях, учитывающих одномерную или трехмерную пространственную зависимость переменных. Динамические, полностью осредненные по пространству модели позволяют описывать динамику кровотока на достаточно больших временных интервалах, равных длительности десятков сердечных циклов и более. Далее рассмотрены стационарные модели основанные как на полностью осредненном, так и на двухмерном подходе. Такие модели могут быть использованы для моделирования кровотока в микроциркуляторном русле. Во второй части обсуждаются модели, основанные на одномерном осреднении параметров кровотока. Преимущество данного подхода также состоит в невысоких, по сравнению с трехмерным моделированием, требованиях к вычислительным ресурсам и возможности охвата всех достаточно крупных кровеносных сосудов в организме. Модели данного типа позволяют рассчитывать параметры кровотока в каждом сосуде сосудистой сети, включенной в модель. Структура и параметры такой сети могут быть заданы как на основе данных литературы, так и с помощью методов сегментации медицинских данных. Основными и весьма существенными предположениями при выводе одномерных уравнений из уравнений Навье – Стокса с помощью асимптотического анализа или их интегрирования по объему являются радиальная симметрия течения и постоянство формы профиля скорости в поперечном сечении. Существующие в настоящее время работы, посвященные валидации одномерных моделей, их сравнению между собой и с данными клинических исследований, позволяют говорить об успешности данного подхода и подтверждают возможность его использования в медицинской практике. Одномерные модели позволяют описывать такие динамические явления, как распространение пульсовой волны и звуки Короткова. В этом приближении могут быть учтены такие факторы, как действие на кровоток силы тяжести, действие на стенки сосудов силы сжатия мышц, регуляторные и ауторегуляторные эффекты.
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
-
Экспериментальное исследование динамики одиночных и связанных в решетке комплекснозначных отображений: архитектура и интерфейс авторской программы для моделирования
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1101-1124В работе описывается свободно распространяемая прикладная программа для исследований в области голоморфной динамики на основе вычислительных возможностей среды MATLAB. Программа позволяет строить не только одиночные комплекснозначные отображения, но и их коллективы как линейно связанные, на квадратной или гексагональной решетке. В первом случае строятся аналоги множества Жюлиа (в виде точек убегания с цветовой индикацией скорости убегания), Фату (с выделением хаотической динамики) и множества Мандельброта, порожденного одним из двух свободных параметров. Во втором случае рассматривается только динамика клеточного автомата с комплекснозначным состоянием ячеек и всеми коэффициентами в локальной функции перехода. Абстрактность объектно-ориентированного программирования позволяет объединить оба типа расчета в рамках одной программы, описывающей итеративную динамику одного объекта.
Для формы поля, начальных условий, шаблона окрестности и особенностей окрестности у граничных ячеек предусмотрены опции выбора. Вид отображения может быть задан регулярным для интерпретатора MATLAB выражением. В статье приводятся некоторые UML-диаграммы, краткое введение в пользовательский интерфейс и ряд примеров.
В качестве рабочих иллюстраций, содержащих новое научное знание, были рассмотрены следующие случаи:
1) дробно-линейное отображение вида $Az^{n} +B/z^{n} $, для которого случаи $n=2$, $4$, $n>1$, известны. На портрете множества Фату привлекают внимание характерные (для классического квадратичного отображения) фигурки <<пряничных человечков>>, показывающие короткопериодические режимы, находящиеся в море компоненты условно хаотической динамики;
2) у множества Мандельброта при нестандартном положении параметра в показателе степени $z(t+1)\Leftarrow z(t)^{\mu } $ на эскизных расчетах обнаруживаются некие зубчатые структуры и облака точек, напоминающие пыль Кантора, не являющиеся букетами Кантора, характерными для экспоненциального отображения. В дальнейшем требуется детализация этих объектов со сложной топологией.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





