Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'вычислительные модели':
Найдено статей: 186
  1. Атеросклеротические заболевания, такие как атеросклероз сонной артерии и хронические болезни почек, являются основными причинами смерти во всем мире. Возникновение таких атеросклеротических болезней в артериях зависит от сложной динамики кровотока и ряда гемодинамических параметров. Атеросклероз почечных артерий приводит к уменьшению артериальной эффективности и в конечном счете приводит к почечной артериальной гипертензии. В данной работе делается попытка определить локализацию атеросклеротической бляшки в брюшной аорте человека в окрестности соединения с почечной артерией с использованием средств вычислительной гидродинамики (CFD).

    Области, подверженные атеросклерозу, в идеализированном соединении брюшной аорты и почечной артерии человека определяются в результате вычислений некоторых гемодинамических показателей. При вычислениях используется точная реологическая модель крови человека, предложенная Yeleswarapu. Кровоток вычисляется в трехмерной модельной области соединения артерий с использованием пакета ANSYS FLUENT v18.2.

    Вычисленные гемодинамические показатели представляют собой среднее значение напряжения сдвига на стенке сосуда (AWSS), колебательный сдвиговый индекс (OSI) и относительное время задержки (RRT). Моделирование пульсирующего течения (f = 1.25 Гц, Re = 1000) показывает, что малое значение AWSS и высокий индекс OSI возникают в областях почечной артерии вниз по течению от соединения и в инфраренальном отделе брюшной аорты вблизи соединения. Высокий RRT, который является относительным индексом и зависит как от AWSS, так и OSI, как показано в данной работе, сочетается с низким AWSS и высоким OSI в краниальной части поверхности почечной артерии, проксимальной около соединения и на латеральной поверхности вблизи бифуркации брюшной аорты: это указывает, что эти области наиболее всего подвержены атеросклерозу. Результаты качественно соответствуют литературным данным. Они могут служить начальным этапом исследований и иллюстрировать пользу средств вычислительной гидродинамики (CFD) для определения местоположения атеросклеротической бляшки.

    Просмотров за год: 3.
  2. Лобачева Л.В., Борисова Е.В.
    Моделирование процессов миграции загрязнений от свалки твердых бытовых отходов
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 369-385

    В статье представлены результаты исследования процессов миграции загрязнений от свалки твердых бытовых отходов (ТБО), расположенной в водоохранной зоне озера Селигер. Для изучения особенностей распространения загрязняющих веществ и определения миграционных параметров проведен комплекс полевых и лабораторных исследований в районе расположения свалки. Построена математическая модель, описывающая физико-химические процессы миграции веществ в почвогрунтовой толще. Процесс движения загрязняющих веществ обуславливается разнообразными факторами, оказывающими существенное влияние на миграцию ингредиентов ТБО, основными из которых являются: конвективный перенос, диффузия и сорбционные процессы, которые учтены в математической постановке задачи. Модифицированная математическая модель отличается от известных аналогов учетом ряда параметров, отражающих снижение концентрации ионов аммонийного и нитратного азота в грунтовых водах (транспирация корнями растений, разбавление инфильтрационными водами и т. д.). Представлено аналитическое решение по оценке распространения загрязнений от свалки ТБО. На основе математической модели построен комплекс имитационных моделей, который позволяет получить численное решение частных задач: вертикальной и горизонтальной миграции веществ в подземном потоке. В ходе выполнения численных экспериментов, получения аналитических решений, а также на основе данных полевых и лабораторных исследований изучена динамика распределения загрязнений в толще объекта исследования до озера. Сделан долгосрочный прогноз распространения загрязнений от свалки. В результате компьютерных и модельных экспериментов установлено, что при миграции загрязнений от свалки можно выделить ряд зон взаимодействия чистых грунтовых вод с загрязненными подземными водами, каждая из которой характеризуется различным содержанием загрязняющих веществ. Данные вычислительных экспериментов и аналитических расчетов согласуются с результатами полевых и лабораторных исследований объекта, что дает основание рекомендовать предлагаемые модели для прогнозирования миграции загрязнений от свалки ТБО. Анализ результатов моделирования миграции загрязнений позволяет обосновать численные оценки увеличения концентрации ионов $NH_4^+$ и $NO_3^-$ со временем функционирования свалки. Выявлено, что уже через 100 лет после начала существования свалки токсичные компоненты фильтрата заполнят все поровое пространство от свалки до озера, что приведет к существенному ухудшению экосистемы озера Селигер.

  3. Лысыч М.Н.
    Компьютерное моделирование процесса обработки почвы рабочими органами почвообрабатывающих машин
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 607-627

    В работе анализируются методы исследования процесса взаимодействия почвенных сред с рабочими органами почвообрабатывающих машин. Подробно рассмотрены математические методы численного моделирования, позволяющие преодолеть недостатки аналитических и эмпирических подходов. Приводятся классификация и обзор возможностей континуальных (FEM — метод конечных элементов, CFD — вычислительная гидродинамика) и дискретных (DEM — метод дискретных элементов, SPH — гидродинамика сглаженных частиц) численных методов. На основе метода дискретных элементов разработана математическая модель, представляющая почву, в виде множества взаимодействующих сферических элементов малых размеров. Рабочие поверхности почвообрабатывающего орудия в рамках конечноэлементного приближения представлены в виде совокупности элементарных треугольников. В модели рассчитывается движение элементов почвы под действием сил контакта элементов почвы друг с другом и с рабочими поверхностями орудия (упругие силы, силы сухого и вязкого трения). Это дает возможность оценивать влияние геометрических параметров рабочих органов, технологических параметров процесса и параметров почвы на геометрические показатели смещения почвы, показатели самоустановки орудия, силовые нагрузки, показатели качества рыхления и пространственное распределение показателей. Всего исследуются 22 показателя (или распределение показателя в пространстве). Возможности математической модели демонстрируются на примере комплексного исследования процесса обработки почвы дисковой культиваторной батареей. В компьютерном эксперименте использованы виртуальный почвенный канал размером 5×1.4 м и 3D-модель дисковой культиваторной батареи. Радиус почвенных частиц принимался равным 18 мм, скорость рабочего органа — 1 м/с, общее время моделирования — 5 с. Глубина обработки составляла 10 см при углах атаки 10, 15, 20, 25 и 30°. Проверка достоверности результатов моделирования производилась на лабораторной установке, для объемного динамометрирования, путем исследования натурного образца, выполненного в полном соответствии с исследованной 3D-моделью. Контроль осуществлялся по трем составляющим вектора тягового сопротивления: $F_x$, $F_y$ и $F_z$. Сравнение данных, полученных экспериментальным путем, с данными моделирования показало, что расхождение составляет не более 22.2 %, при этом во всех случаях максимальные значения наблюдались при углах атаки 30°. Хорошая согласуемость данных по трем ключевым силовым параметрам подтверждает достоверность всего комплекса исследованных показателей.

  4. Шибков А.А., Кочегаров С.С.
    Компьютерное и физико-химическое моделирование эволюции фрактального коррозионного фронта
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 105-124

    Коррозионные повреждения металлов и сплавов — одна из основных проблем прочности и долговечности металлических конструкций и изделий, эксплуатируемых в условиях контакта с химически агрессивными средами. В последнее время возрастает интерес к компьютерному моделированию эволюции коррозионных повреждений, особенно питтинговой коррозии, для более глубокого понимания коррозионного процесса, его влияния на морфологию, физико-химические свойства поверхности и механическую прочность и долговечность материала. Это обусловлено в основном сложностью аналитических и высокой стоимостью экспериментальных in situ исследований реальных коррозионных процессов. Вместе с тем вычислительные мощности современных компьютеров позволяют с высокой точностью рассчитывать коррозию лишь на относительно небольших участках поверхности. Поэтому разработка новых математических моделей, позволяющих рассчитывать большие области для прогнозирования эволюции коррозионных повреждений металлов, является в настоящее время актуальной проблемой.

    В настоящей работе с помощью разработанной компьютерной модели на основе клеточного автомата исследовали эволюцию коррозионного фронта при взаимодействии поверхности поликристаллического металла с жидкой агрессивной средой. Зеренная структура металла задавалась с помощью многоугольников Вороного, используемых для моделирования поликристаллических сплавов. Коррозионное разрушение осуществлялось при помощи задания вероятностной функции перехода между ячейками клеточного автомата. Принималось во внимание, что коррозионная прочность зерен неодинакова вследствие кристаллографической анизотропии. Показано, что это приводит к формированию шероховатой фазовой границы в ходе коррозионного процесса. Снижение концентрации активных частиц в растворе агрессивной среды в ходе протекающей химической реакции приводит к затуханию коррозии за конечное число итераций расчета. Установлено, что конечная фазовая граница имеет фрактальную структуру с размерностью 1.323 ± 0.002, близкой к размерности фронта градиентной перколяции, что хорошо согласуется с фрактальной размерностью фронта травления поликристаллического алюминий-магниевого сплава АМг6 концентрированным раствором соляной кислоты. Показано, что коррозия поликристаллического металла в жидкой агрессивной среде представляет новый пример топохимического процесса, кинетика которого описывается теорией Колмогорова–Джонсона–Мейла–Аврами.

  5. При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.

    В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.

  6. Адамовский Е.Р., Чертков В.М., Богуш Р.П.
    Модель формирования карты радиосреды для когнитивной системы связи на базе сотовой сети LTE
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 127-146

    Статья посвящена вторичному использованию спектра в телекоммуникационных сетях. Акцентируется внимание, что одним из решений данной проблемы является применение технологий когнитивного радио и динамического доступа к спектру, для успешного функционирования которых необходим большой объем информации, включающий параметры базовых станций и абонентов сети. Хранение и обработка информации должны осуществляться при помощи карты радиосреды, которая представляет собой пространственно-временную базу данных всех активностей в сети и позволяет определять доступные для использования в заданное время частоты. В работе представлена двухуровневая модель для формирования карты радиосреды системы сотовой связи LTE, в которой выделены локальный и глобальный уровни, описываемая следующими параметрами: набор частот, ослабление сигнала, карта распространения сигналов, шаг сетки, текущий временной отсчет. Ключевыми объектами модели являются базовая станция и абонентское устройство. К основным параметрам базовой станции отнесены: наименование, идентификатор, координаты ячейки, номер, диапазон, мощность излучения, номера подключенных абонентских устройств, выделенные им ресурсные блоки. Для абонентских устройств в качестве параметров используются: наименование, идентификатор, местоположение, текущие координаты ячейки устройства, идентификатор рабочей базовой станции, частотный диапазон, номера ресурсных блоков для связи со станцией, мощность излучения, статус передачи данных, список номеров ближайших станций, расписания перемещения и сеансов связи устройств. Представлен алгоритм для реализации модели с учетом сценариев перемещения и сеансов связи абонентских устройств. Приводится методика расчета карты радиосреды в точке координатной сетки с учетом потерь при распространении радиосигналов от излучающих устройств. Программная реализация модели выполнена с использованием пакета MatLab. Описаны подходы, позволяющие повысить быстродействие ее работы. При моделировании выбор параметров осуществлялся с учетом данных действующих систем связи и экономии вычислительных ресурсов. Продемонстрированы результаты исследований программной реализации алгоритма формирования карты радиосреды, подтверждающие корректность разработанной модели.

  7. Лопато А.И., Порошина Я.Э., Уткин П.С.
    Численное исследование механизмов распространения пульсирующей газовой детонации в неоднородной среде
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1263-1282

    В последние несколько лет наблюдаются значительные успехи в области создания двигательных установок для летательных аппаратов, основанных на сжигании топлива во вращающейся детонационной волне. В научных лабораторияхпо всему миру проводятся как фундаментальные исследования, связанные, например, с вопросами смесеобразования при раздельной подаче топлива и окислителя, так и прикладные по доводке уже существующих прототипов. В работе приводится краткий обзор основных результатов наиболее значимых недавних расчетных работ по изучению распространения одномерной пульсирующей волны газовой детонации в среде с неравномерным распределением параметров. Отмечаются общие тенденции, которые наблюдали авторы данных работ. В этих работах показано, что наличие возмущений параметров перед фронтом волны может приводить к регуляризации и к резонансному усилению пульсаций параметров за ее фронтом. В результате возникает привлекательная с практической точки зрения возможность влиять на устойчивость детонационной волны и управлять ею. Настоящая работа направлена на создание инструмента, который позволяет изучать газодинамические механизмы данных эффектов.

    Математическая модель основана на одномерных уравнениях Эйлера, дополненных одностадийной моделью кинетики химических реакций. Определяющая система уравнений записана в системе координат, связанной с лидирующим скачком, что приводит к необходимости добавить уравнение для скорости лидирующей волны. Предложен способ интегрирования данного уравнения, учитывающий изменение плотности среды перед фронтом волны. Таким образом, предложен вычислительный алгоритм для моделирования распространения детонации в неоднородной среде.

    С использованием разработанного алгоритма проведено численное исследование распространения устойчивой детонации в среде с переменной плотностью. Исследован режим с относительно небольшой амплитудой колебаний плотности, при котором колебания параметров за фронтом детонационной волны происходят с частотой колебаний плотности среды. Показана связь периода колебаний параметров со временем прохождения характеристик C+ и C0 по области, которую условно можно считать зоной индукции. Сдвиг по фазе между колебаниями скорости детонационной волны и плотности газа перед волной оценен как максимальное время прохождения характеристики C+ по зоне индукции.

  8. Маликов З.М., Назаров Ф.Х., Мадалиев М.Э.
    Численное исследование турбулентного потока Тейлора – Куэтта
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 395-408

    В настоящей работе исследован турбулентный поток Тейлора – Куэтта с помощью двухмерного моделирования на базе осредненных уравнений Навье – Стокса (RANS) и нового двухжидкостного подхода к турбулентности при числах Рейнольдса в диапазоне от 1000 до 8000. Исследуется течение, обусловленное вращающимся внутренним и неподвижным внешним цилиндрами. Рассмотрен случай соотношения диаметров цилиндров 1:2. Известно, что возникающее круговое течение характеризуется анизотропной турбулентностью и математическое моделирование таких потоков является сложной задачей. Для описания таких потоков используются либо методы прямого моделирования, которые требуют больших вычислительных затрат, либо достаточно трудоемкие методы рейнольдсовых напряжений или же линейные RANS-модели со специальными поправками на вращение, которые способны описывать анизотропную турбулентность. В работе для сравнения различных подходов к моделированию турбулентности представлены численные результаты линейных RANS-моделей SARC, SST-RC, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012, прямого моделирования турбулентности DNS, а также новой двухжидкостной модели. Показано, что недавно разработанная двухжидкостная модель адекватно описывает рассматриваемый поток. Помимо этого, двухжидкостная модель проста для численной реализации и имеет хорошую сходимость.

  9. Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.

    Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.

    Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).

  10. Аксёнов А.А., Жлуктов С.В., Шмелев В.В., Шапоренко Е.В., Шепелев С.Ф., Рогожкин С.А., Крылов А.Н.
    Расчетные исследования процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 95-110

    В программном комплексе FlowVision проведено численное моделирование процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике для обоснования применимости различных подходов — URANS (Unsteady Reynolds Averaged Navier Stokers), LES (Large Eddy Simulation) и квази-DNS (Direct Numerical Simulation) — для предсказания осциллирующего характера течения в зоне смешения и получения температурных пульсаций. Одна из основных задач данной работы — выявление преимуществ и недостатков использования этих подходов.

    Численное исследование пульсаций температуры, возникающих в жидкости и в стенках тройника в процессе перемешивания неизотермических потоков натриевого теплоносителя, проведено в рамках математической модели, предполагающей, что рассматриваемое течение турбулентное, плотность жидкости не зависит от давления и что между теплоносителем и стенками тройника происходит теплообмен. При моделировании турбулентного теплопереноса в рамках подхода URANS применялась модель турбулентного теплопереноса LMS.

    Исследование было проведено в два этапа. На предварительном этапе были определены влияние расчетной сетки на формирование осциллирующего течения и характер температурных пульсаций в рамках указанных выше подходов к моделированию турбулентности. В результате этого исследования были выработаны критерии построения расчетных сеток для каждого из подходов и произведена оценка потребных вычислительных ресурсов.

    Затем были проведены расчеты для трех режимов течения, отличающихся соотношением расходов и температур натрия во входных сечениях тройника. Для каждого режима выполнены расчеты с применением подходов URANS, LES и квази-DNS.

    На заключительном этапе работы был проведен сравнительный анализ численных и экспериментальных данных. Определены и сформулированы преимущества и недостатки использования каждого из указанных подходов к моделированию процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике.

    Просмотров за год: 3.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.