Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'вычислительная схема':
Найдено статей: 85
  1. Юдин Н.Е., Гасников А.В.
    Регуляризация и ускорение метода Гаусса – Ньютона
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840

    Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.

  2. Холодков К.И., Алёшин И.М.
    Точное вычисление апостериорной функции распределения вероятно- сти при помощи вычислительных систем
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 539-542

    Представленная работа описывает опыт создания и развёртывания веб-приложения и гридинфраструктуры для решения задач геофизики, требующих большого количества вычислительных ресурсов. В работе представлен обзор технологии и механизма платформы интеграции геофизических приложений с распределёнными вычислительными системами. Разработанная платформа предоставляет собой промежуточное программное обеспечение, предоставляющая удобный доступ к развёрнутым на ее основе геофизическим приложениям. Доступ к приложению осуществляется через веб-браузер. Интеграция новых приложений облегчается за счёт предоставляемого стандартного универсального интерфейса взаимодействия платформы и новым приложением.

    Для организации распределённой вычислительной системы применено ПО Gridway, экземпляр которого взаимодействует с виртуализированными вычислительными кластерами. Виртуализация вычислительных кластеров предоставляет новые возможности при утилизации вычислительных ресурсов по сравнению с традиционными схемами организации кластерного ПО.

    В качестве пилотной задачи использована обратная задача определение параметров анизотропии коры и верхней мантии по данным телесейсмических наблюдений. Для решения использован вероятностный подход к решению обратных задач, основанный на формализме апостериорной функции распределения (АПФР). При этом вычислительная задача сводится к табулированию многомерной функции. Результат вычислений представлен в удобном для анализа высокоуровневом виде, доступ и управление осуществляется при помощи СУБД. Приложение предоставляет инструменты анализу АПФР: расчет первых моментов, двумерные маргинальные распределения, двумерные сечения АПФР в точках ее максимума. При тестировании веб-приложения были выполнены вычислены как синтетических, так и для реальных данных.

    Просмотров за год: 3.
  3. В работе рассматриваются возможности реализации крупноблочных схем метода ветвей и границ для решения частично целочисленных задач линейного программирования. В качестве основы берется пакет оптимизации с открытым исходным кодом CBC. Анализируется возможность использования пакета для реализации крупноблочной схемы метода ветвей и границ. Система реализуется с использованием языка Erlang. Проводятся численные эксперименты на основе задачи о коммивояжере, показывающие заметное ускорение распределенной схемы решения задачи по сравнению с единичным однопоточным экземпляром пакета.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  4. Дегтярев А.Б., Ежакова Т.Р., Храмушин В.Н.
    Алгоритмическое построение явных численных схем и визуализация объектов и процессов в вычислительном эксперименте в гидромеханике
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 767-774

    В работе рассматриваются проектные и поверочные этапы, в разработке сложных вычислительных алгоритмов для создания прямых вычислительных экспериментов в гидромеханике. В моделировании физических полей и нестационарных процессов механики сплошных сред желательно опираться на строгие правила конструирования числовых объектов и связанных с ними вычислительных алгоритмов. Синтез адаптивных числовых объектов и эффективных арифметико-логических операций может послужить оптимизации всей вычислительной задачи, при условии строго следования и соблюдения исходных законов гидромеханики. Возможность использования троичной логики позволяет разрешить некоторые противоречия функционального и декларативного программирования в реализации чисто прикладных задач механики. Аналогичные проектные решения приводят к новым численным схемам тензорной математики, которые позволяют оптимизировать эффективность и обосновывать корректность результатов моделирования. Наиболее важным следствием является возможность использования интерактивных графических методов для визуализации промежуточных результатов моделирования, а также для управляемого воздействия на ход вычислительного эксперимента под контролем инженеров аэрогидромехаников–исследователей.

    Просмотров за год: 1.
  5. Ершов Н.М., Попова Н.Н.
    Естественные модели параллельных вычислений
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785

    Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.

    Просмотров за год: 17. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.