Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'восстановление':
Найдено статей: 56
  1. Хрущев С.С., Фурсова П.В., Плюснина Т.Ю., Ризниченко Г.Ю., Рубин А.Б.
    Анализ скорости электронного транспорта через фотосинтетический цитохромный $b_6 f$ -комплекс
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 997-1022

    Рассматривается основанный на методах линейной алгебры подход к анализу скорости электронного транспорта через цитохромный $b_6 f$-комплекс. В предложенном подходе зависимость квазистационарного потока электронов через комплекс от степени восстановленности пулов мобильных переносчиков электрона выступает в качестве функции отклика, характеризующей этот процесс. Разработано программное обеспечение на языке программирования Python, позволяющее построить основное кинетическое уравнение для комплекса по схеме элементарных реакций и вычислить квазистационарные скорости электронного транспорта через комплекс и динамику их изменения в ходе переходного процесса. Вычисления проводятся в многопоточном режиме, что позволяет эффективно использовать ресурсы современных вычислительных систем и за сравнительно небольшое время получать данные о функционировании комплекса в широком диапазоне параметров. Предложенный подход может быть легко адаптирован для анализа электронного транспорта в других компонентах фотосинтетической и дыхательной электрон-транспортной цепи, а также других процессов в сложных мультиферментных комплексах, содержащих несколько реакционных центров. Для параметризации модели цитохромного $b_6 f$-комплекса использованы данные криоэлектронной микроскопии и окислительно-восстановительного титрования. Получены зависимости квазистационарной скорости восстановления пластоцианина и окисления пластохинона от степени восстановленности пулов мобильных переносчиков электрона и проанализирована динамика изменения скорости в ответ на изменение редокс-состояния пула пластохинонов. Результаты моделирования находятся в хорошем согласовании с имеющимися экспериментальными данными.

  2. Храмцова Е.А., Капралова И.В., Межевикина Л.М.
    Предсказание имплантационного потенциала эмбрионов на основе морфологической оценки
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 111-116

    Ранние зародыши на стадии бластоцисты, полученные in vitro, имеют низкий имплантационный потенциал. Данная работа посвящена оценке морфологии бластоцист, способных имплантироваться после микроинъекции. Скорость восстановления объема бластоцист после микроинъекции позволяет оценивать активность клеток трофобласта, участвующих в имплантации. Предложена модель для прогнозирования эффективности развития зародышей мышей на стадии бластоцисты in vitro. Показано, что скорость восстановления морфологии бластоцисты является наиболее важной характеристикой имплантационного потенциала зародышей. Максимальная скорость восстановления внутреннего объема (35.7 % от исходного объема в течение 1 ч) коррелирует со способностью бластоцист формировать первичные колонии эмбриональных клеток через 72 ч in vitro, что соответствует процессу имплантации. С помощью ROC-анализа и значения AUC (area under curve) установлено, что комбинация таких признаков как стадия бластоцисты (например средняя или поздняя бластоциста) и скорость восстановления внутреннего объема обладают высокой ценностью для предсказания имплантационного потенциала.

  3. Орел В.Р., Тамбовцева Р.В., Фирсова Е.А.
    Влияние сократимости сердца и его сосудистой нагрузки на частоту сердечных сокращений у спортсменов
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 323-329

    Частота сердечных сокращений (ЧСС) является наиболее доступным для измерения показателем. С целью контроля индивидуальной реакции на нагрузочность физических упражнений ЧСС измеряется при выполнении спортсменами мышечной работы разных типов (работа на силовых тренажерах, различные виды тренировочных и соревновательных нагрузок). По величине ЧСС и динамике ее изменения при мышечной работе и восстановлении можно объективно судить о функциональном состоянии сердечно-сосудистой системы спортсмена, об уровне его индивидуальной физической работоспособности, а также об адаптивной реакции на ту или иную физическую нагрузку. Однако ЧСС не является самостоятельным детерминантом физического состояния спортсмена. Величина ЧСС формируется в результате взаимодействия основных физиологических механизмов, определяющих гемодинамический режим сердечного выброса. Сердечный ритм зависит, с одной стороны, от сократимости сердца, от венозного возврата, от объемов предсердий и желудочков сердца, а с другой стороны — от сосудистой нагрузки сердца, основными компонентами которой являются эластическое и периферическое сопротивление артериальной системы. Величины сосудистых сопротивлений артериальной системы зависят от мощности мышечной работы и времени ее выполнения. Чувствительность ЧСС к изменениям сосудистой нагрузки сердца и его сократимости определялась у спортсменов по результатам парного регрессионного анализа одновременно зарегистрированных данных ЧСС, периферического $(R)$ и эластического $(E_a)$ сопротивлений (сосудистая нагрузка сердца), а также механической мощности $(W)$ сердечных сокращений (сократимость сердца). Коэффициенты чувствительности и коэффициенты парной корреляции между ЧСС и показателями сосудистой нагрузки и сократимости левого желудочка сердца спортсмена определялись в покое и при выполнении мышечной работы на велоэргометре. Показано, что с ростом мощности велоэргометрической нагрузки и увеличением ЧСС возрастают также коэффициенты корреляции и чувствительности между ЧСС и показателями сосудистой нагрузки сердца $(R, E_a)$ и его сократимости $(W)$.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
  4. Токарев А.А., Бутылин А.А., Атауллаханов Ф.И.
    Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200

    Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.

    Просмотров за год: 3. Цитирований: 8 (РИНЦ).
  5. Стонякин Ф.С., Лyшко Е.А., Третьяк И.Д., Аблаев С.С.
    Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778

    Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.

  6. Юдин Н.Е., Гасников А.В.
    Регуляризация и ускорение метода Гаусса – Ньютона
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840

    Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.