Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Использование синтаксических деревьев для автоматизации коррекции документов в формате LaTeX
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 871-883Цитирований: 5 (РИНЦ).Рассматривается задача автоматизации коррекции документов в формате LaTeX. Каждый документ представляется в виде синтаксического дерева. С помощью модифицированного алгоритма Zhang-Shasha строится отображение вершин дерева изначального документа в вершины дерева отредактированного документа, соответствующее минимальному редактирующему расстоянию. Отображения вершины в вершину составляют обучающую выборку, по которой генерируются правила замены для автоматической коррекции. Для каждого правила собирается статистика его применимости к отредактированным документам. На ее основе производится оценка качества правил и их улучшение.
-
Аддитивная регуляризация тематических моделей с быстрой векторизацией текста
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1515-1528Задача вероятностного тематического моделирования заключается в том, чтобы по заданной коллекции текстовых документов найти две матрицы: матрицу условных вероятностей тем в документах и матрицу условных вероятностей слов в темах. Каждый документ представляется в виде мультимножества слов, то есть предполагается, что для выявления тематики документа не важен порядок слов в нем, а важна только их частота. При таком предположении задача сводится к вычислению низкорангового неотрицательного матричного разложения, наилучшего по критерию максимума правдоподобия. Данная задача имеет в общем случае бесконечное множество решений, то есть является некорректно поставленной. Для регуляризации ее решения к логарифму правдоподобия добавляется взвешенная сумма оптимизационных критериев, с помощью которых формализуются дополнительные требования к модели. При моделировании больших текстовых коллекций хранение первой матрицы представляется нецелесообразным, поскольку ее размер пропорционален числу документов в коллекции. В то же время тематические векторные представления документов необходимы для решения многих задач текстовой аналитики — информационного поиска, кластеризации, классификации, суммаризации текстов. На практике тематический вектор вычисляется для каждого документа по необходимости, что может потребовать десятков итераций по всем словам документа. В данной работе предлагается способ быстрого вычисления тематического вектора для произвольного текста, требующий лишь одной итерации, то есть однократного прохода по всем словам документа. Для этого в модель вводится дополнительное ограничение в виде уравнения, позволяющего вычислять первую матрицу через вторую за линейное время. Хотя формально данное ограничение не является оптимизационным критерием, фактически оно выполняет роль регуляризатора и может применяться в сочетании с другими критериями в рамках теории аддитивной регуляризации тематических моделей ARTM. Эксперименты на трех свободно доступных текстовых коллекциях показали, что предложенный метод улучшает качество модели по пяти оценкам качества, характеризующим разреженность, различность, информативность и когерентность тем. Для проведения экспериментов использовались библиотеки с открытымк одомB igARTM и TopicNet.
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
-
Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.
Ключевые слова: субградиентный метод, адаптивный метод, шаг Поляка, слабо выпуклые функции, острый минимум, неточный субградиент. -
Решение логистической задачи топливоснабжения распределенной региональной системы теплоснабжения
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 451-470Предложена методика решения задачи логистики топливоснабжения региона, включающая в себя взаимосвязанные задачи маршрутизации, кластеризации, оптимального распределения ресурсов и управления запасами. Расчеты проведены на примере системы топливоснабжения Удмуртской Республики.
Ключевые слова: логистика, топливоснабжение, маршрутизация, кластеризация, оптимизация, управление запасами, генетический алгоритм.Просмотров за год: 1. Цитирований: 6 (РИНЦ). -
Конфирматорная факторная модель артериальной гипертензии
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 885-894Просмотров за год: 2. Цитирований: 7 (РИНЦ).Предлагается новая методика построения ортогональной факторной модели на основе метода корреляционных плеяд и конфирматорного факторного анализа. Предложен новый алгоритм конфирматорного факторного анализа. На основе оригинальной методики построена факторная модель артериальной гипертензии первой стадии. Проведен анализ корреляционных зависимостей и показателей артериальной гипертензии.
-
Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.
Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.
Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.
По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.
Ключевые слова: точки разворота, временные ряды, финансовые рынки, машинное обучение, нейронные сети. -
Обучение с подкреплением при оптимизации параметров торговой стратегии на финансовых рынках
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1793-1812Высокочастотная алгоритмическая торговля — это подкласс трейдинга, ориентированный на получение прибыли на субсекундных временных интервалах. Такие торговые стратегии не зависят от большинства факторов, подходящих для долгосрочной торговли, и требуют особого подхода. Было много попыток использовать методы машинного обучения как для высоко-, так и для низкочастотной торговли. Однако они по-прежнему имеют ограниченное применение на практике из-за высокой подверженности переобучению, требований к быстрой адаптации к новым режимам рынка и общей нестабильности результатов. Мы провели комплексное исследование по сочетанию известных количественных теорий и методов обучения с подкреплением, чтобы вывести более эффективный и надежный подход при построении автоматизированной торговой системы в попытке создать поддержку для известных алгоритмических торговых техник. Используя классические теории поведения цен, а также современные примеры применения в субмиллисекундной торговле, мы применили модели обучения с усилением для улучшения качества алгоритмов. В результате мы создали надежную модель, использующую глубокое обучение с усилением для оптимизации параметров статических торговых алгоритмов, способных к онлайн-обучению на живых данных. Более конкретно, мы исследовали систему на срочном криптовалютном рынке, который в основном не зависит от внешних факторов в краткосрочной перспективе. Наше исследование было реализовано в высокочастотной среде, и итоговые модели показали способность работать в рамках принятых таймфреймов высокочастотной торговли. Мы сравнили различные комбинации подходов глубинного обучения с подкреплением и классических алгоритмов и оценили устойчивость и эффективность улучшений для каждой комбинации.
Ключевые слова: обучение с подкреплением, алгоритмическая торговля, высокочастотная торговля, маркет-мейкинг. -
Решение распределенных вариационных неравенств с использованием смещенной компрессии, похожести данных и локальных обновлений
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1813-1827Вариационные неравенства представляют собой широкий класс задач, имеющих применение во множестве областей, включая теорию игр, экономику и машинное обучение. Однако, методы решения современных вариационных неравенств становятся все более вычислительно требовательными. Поэтому растет необходимость использовать распределенных подходов для решения таких задач за разумное время. В распределенной постановке вычислительным устройствам необходимо обмениваться данными друг с другом, что является узким местом. Существует три основных приема снижения стоимости и количества обменов данными: использование похожести локальных операторов, сжатие сообщений и применение локальных шагов на устройствах. Известен алгоритм, который использует эти три техники одновременно для решения распределенных вариационных неравенств и превосходит все остальные методы с точки зрения коммуникационных затрат. Однако этот метод работает только с так называемыми несмещенными операторами сжатия. Между тем использование смещенных операторов приводит к лучшим результатам на практике, но требует дополнительных модификаций алгоритма и больших усилий при доказательстве сходимости. В этой работе представляется новый алгоритм, который решает распределенные вариационные неравенства, используя похожесть локальных операторов, смещенное сжатие и локальные обновления на устройствах; выводится теоретическая сходимость такого алгоритма и проводятся эксперименты.
-
Декомпозиция задачи моделирования некоторых объектов археологических исследований для работы в распределенной вычислительной среде
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 533-537В то время как каждая задача воссоздания артефактов уникальна, моделирование фасадов, фундаментов и конструктивных элементов строений может быть параметризовано. В работе рассмотрен комплекс существующих программных библиотек и решений, которые необходимо объединить в единую вычислительную систему для решения такой задачи. Представлен алгоритм генерации трехмерного заполнения реконструируемых объектов. Рассмотрена архитектура решения, необходимая для переноса системы в облачную среду.
Ключевые слова: сетевые распределенные вычисления, облачные вычисления, моделирование, реконструкция, сервисная архитектура.Просмотров за год: 1. Цитирований: 2 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"