Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'алгоритмы':
Найдено статей: 318
  1. Адамовский Е.Р., Чертков В.М., Богуш Р.П.
    Модель формирования карты радиосреды для когнитивной системы связи на базе сотовой сети LTE
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 127-146

    Статья посвящена вторичному использованию спектра в телекоммуникационных сетях. Акцентируется внимание, что одним из решений данной проблемы является применение технологий когнитивного радио и динамического доступа к спектру, для успешного функционирования которых необходим большой объем информации, включающий параметры базовых станций и абонентов сети. Хранение и обработка информации должны осуществляться при помощи карты радиосреды, которая представляет собой пространственно-временную базу данных всех активностей в сети и позволяет определять доступные для использования в заданное время частоты. В работе представлена двухуровневая модель для формирования карты радиосреды системы сотовой связи LTE, в которой выделены локальный и глобальный уровни, описываемая следующими параметрами: набор частот, ослабление сигнала, карта распространения сигналов, шаг сетки, текущий временной отсчет. Ключевыми объектами модели являются базовая станция и абонентское устройство. К основным параметрам базовой станции отнесены: наименование, идентификатор, координаты ячейки, номер, диапазон, мощность излучения, номера подключенных абонентских устройств, выделенные им ресурсные блоки. Для абонентских устройств в качестве параметров используются: наименование, идентификатор, местоположение, текущие координаты ячейки устройства, идентификатор рабочей базовой станции, частотный диапазон, номера ресурсных блоков для связи со станцией, мощность излучения, статус передачи данных, список номеров ближайших станций, расписания перемещения и сеансов связи устройств. Представлен алгоритм для реализации модели с учетом сценариев перемещения и сеансов связи абонентских устройств. Приводится методика расчета карты радиосреды в точке координатной сетки с учетом потерь при распространении радиосигналов от излучающих устройств. Программная реализация модели выполнена с использованием пакета MatLab. Описаны подходы, позволяющие повысить быстродействие ее работы. При моделировании выбор параметров осуществлялся с учетом данных действующих систем связи и экономии вычислительных ресурсов. Продемонстрированы результаты исследований программной реализации алгоритма формирования карты радиосреды, подтверждающие корректность разработанной модели.

  2. В первой части статьи сформулирована общая цель работы, состоящая в численном исследовании химических, ионизационных, оптических и температурных характеристик нижней ионосферы, возмущенной мощным потоком радиоизлучения. Дан краткий обзор основных экспериментальных и теоретических исследований физических явлений в ионосфере при воздействии на нее потока радиоволн коротковолнового диапазона, генерируемого нагревными стендами различной мощности. Показана определяющая роль $D$-области ионосферы в поглощении энергии радиолуча. Выполнен подробный анализ кинетических процессов в возмущенной $D$-области ионосферы, которая является наиболее сложной в кинетическом отношении. Показано, что для полного описания ионизационно-химических и оптических характеристик возмущенной области необходимо учитывать более 70 компонент, которые по своему основному физическому содержанию удобно разделить на пять групп. Представлена кинетическая модель для описания изменения концентраций взаимодействующих между собой компонентов (общее число реакций — 259). Система кинетических уравнений решалась с помощью специально адаптированного к такого рода задачам полунеявного численного метода. На основе предложенной структуры разработан программный комплекс, в котором схема алгоритма допускала менять как содержимое отдельных блоков программы, так и их количество, что позволило проводить подробные численные исследования отдельных процессов в поведении параметров возмущенной области. Полный численный алгоритм основан на двухтемпературном приближении, в котором главное внимание уделялось расчету электронной температуры, так как на ее поведение определяющее влияние оказывают неупругие кинетические процессы с участием электронов. Постановка задачи носит общий характер и позволяет рассчитывать параметры возмущенной ионосферы в широком диапазоне мощностей и частот радиоизлучения. На основе разработанной численной методики можно исследовать широкий круг явлений как в естественной, так и в возмущенной ионосфере.

  3. Лопато А.И., Порошина Я.Э., Уткин П.С.
    Численное исследование механизмов распространения пульсирующей газовой детонации в неоднородной среде
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1263-1282

    В последние несколько лет наблюдаются значительные успехи в области создания двигательных установок для летательных аппаратов, основанных на сжигании топлива во вращающейся детонационной волне. В научных лабораторияхпо всему миру проводятся как фундаментальные исследования, связанные, например, с вопросами смесеобразования при раздельной подаче топлива и окислителя, так и прикладные по доводке уже существующих прототипов. В работе приводится краткий обзор основных результатов наиболее значимых недавних расчетных работ по изучению распространения одномерной пульсирующей волны газовой детонации в среде с неравномерным распределением параметров. Отмечаются общие тенденции, которые наблюдали авторы данных работ. В этих работах показано, что наличие возмущений параметров перед фронтом волны может приводить к регуляризации и к резонансному усилению пульсаций параметров за ее фронтом. В результате возникает привлекательная с практической точки зрения возможность влиять на устойчивость детонационной волны и управлять ею. Настоящая работа направлена на создание инструмента, который позволяет изучать газодинамические механизмы данных эффектов.

    Математическая модель основана на одномерных уравнениях Эйлера, дополненных одностадийной моделью кинетики химических реакций. Определяющая система уравнений записана в системе координат, связанной с лидирующим скачком, что приводит к необходимости добавить уравнение для скорости лидирующей волны. Предложен способ интегрирования данного уравнения, учитывающий изменение плотности среды перед фронтом волны. Таким образом, предложен вычислительный алгоритм для моделирования распространения детонации в неоднородной среде.

    С использованием разработанного алгоритма проведено численное исследование распространения устойчивой детонации в среде с переменной плотностью. Исследован режим с относительно небольшой амплитудой колебаний плотности, при котором колебания параметров за фронтом детонационной волны происходят с частотой колебаний плотности среды. Показана связь периода колебаний параметров со временем прохождения характеристик C+ и C0 по области, которую условно можно считать зоной индукции. Сдвиг по фазе между колебаниями скорости детонационной волны и плотности газа перед волной оценен как максимальное время прохождения характеристики C+ по зоне индукции.

  4. Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.

    Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.

    Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).

  5. Горшенин А.К., Королев В.Ю., Малахов Д.В., Скворцова Н.Н.
    Об исследовании плазменной турбулентности на основе анализа спектров
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 793-802

    В статье рассмотрены примеры анализа спектров экспериментальных данных для выявления характерных структур процессов, формирующих турбулентность в плазме. Основу метода составляет использование оригинального алгоритма, идеологически близкого к бутстреппроцедуре для одновыборочной задачи. В качестве базовой модели для описания тонкой структуры стохастических процессов предлагаются конечные сдвиг-масштабные смеси нормальных законов. Для отыскания статистических оценок (максимального правдоподобия) предполагается использование широко известного EM-алгоритма. Для нескольких серий спектров, полученных для разных режимов низкочастотной плазменной турбулентности, демонстрируется эффективность использования предложенного метода исследования.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
  6. Москалев П.В.
    Структура моделей перколяции узлов на трехмерных квадратных решетках
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 607-622

    В работе рассматривается структура моделей перколяции узлов на трехмерных квадратных решеткахпри различныхфор мах (1,π)-окрестности. Для этихмо делей предложены изо- и анизотропные модификации алгоритма инвазивной перколяции с (1,0)- и (1,π)-окрестностями. Все рассмотренные алгоритмы являются частными случаями анизотропного алгоритма инвазивной перколяции на n-мерной решетке с (1,π)-окрестностью. Данный алгоритм положен в основу библиотеки SPSL, выпущенной под лицензией GNU GPL-3 с использованием свободного языка программирования R.

    Просмотров за год: 8. Цитирований: 5 (РИНЦ).
  7. Иванов С.И., Матасов А.В., Меньшутина Н.В.
    Модель деформации полимерных нанокомпозитов на основе клеточных автоматов
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 131-136

    Данная статья посвящена моделированию процесса деформации полимерных нанокомпозитов, содержащих «жесткие» и «мягкие» включения, с использованием клеточных автоматов и параллельных вычислений. В статье описан алгоритм расчета по модели, приведены сравнения с экспериментальными данными и описан программный комплекс для проведения численного эксперимента.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  8. Бабина О.И.
    Разработка оптимизационной имитационной модели для поддержки процессов планирования складских систем
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 295-307

    В статье рассматриваются вопросы применения метода оптимизации для поддержки процессов планирования складских системах с помощью технологии имитационного моделирования. Исследованы механизмы взаимосвязи оптимизационной и имитационной моделей, а также подробно описан алгоритм разработки оптимизационной имитационной модели складской системы для поддержки процессов планирования.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  9. Кузенков Н.П., Логинов В.М.
    Использование метода нормированного размаха при анализе речевых патологий неврологического генеза
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 775-791

    На основании модификации алгоритма вычисления нормированного размаха предлагается способ определения показателя Хёрста, а также оценки характерного времени, в течение которого показатель Хёрста остается постоянным. Разработан подход к упрощению автоматизации вычисления показателя Хёрста и увеличения его точности. Показатель Хёрста и характерное время вычислены для рядов мощностей речевых сигналов с различными моторными патологиями (афазии, дизартрии). Проведен их статистический анализ, произведена оценка корреляции между показателем Хёрста и характерным временем. Обсуждается возможность использования результатов в диагностике речевых патологий.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  10. Матюшев Т.В., Дворников М.В.
    Анализ респираторных реакций человека в условиях измененной газовой среды на математической модели
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 281-296

    Цель работы — обоснование и разработка методики прогноза динамики респираторных реакций человека на основе математического моделирования. Для достижения этой цели были поставлены и решены следующие задачи: разработаны и обоснованы общая структура и формализованное описание модели респираторной системы; построен и программно реализован алгоритм модели газообмена организма; проведены вычислительный эксперимент и проверка модели на адекватность на основе литературных данных и собственных экспериментальных исследований.

    В данном варианте в комплексную модель вошел новый модифицированный вариант частной модели физико-химических свойств крови и кислотно-щелочного баланса. При разработке модели в основу формализованного описания была положена концепция разделения физиологической системы регуляции на активные и пассивные подсистемы регуляции. Разработка модели проводилась поэтапно. Комплексная модель газообмена состояла из следующих частных моделей: базовой биофизической модели системы газообмена; модели физико-химических свойств крови и кислотно-щелочного баланса; модели пассивных механизмов газообмена, разработанной на основе уравнений материального баланса Гродинза Ф.; модели химической регуляции, разработанной на основе многофакторной модели Грея Д.

    При программной реализации модели расчеты выполнялись в среде программирования MatLab. Для решения уравнений использовался метод Рунге–Кутты–Фехлберга. При этом предполагается, что модель будет представлена в виде компьютерной исследовательской программы, позволяющей реализовать различные гипотезы о механизме наблюдаемых процессов. Рассчитаны предполагаемые величины основных показателей газообмена в условиях гиперкапнии и гипоксии. Результаты расчетов, как по характеру, так и количественно, достаточно хорошо согласуются с данными, полученными в исследованиях на испытателях. Проведенная проверка на адекватность подтвердила, что погрешность вычислений находится в пределах погрешности данных медико-биологических экспериментов. Модель можно использовать при теоретическом прогнозировании динамики респираторных реакций организма человека в условиях измененной газовой среды.

    Просмотров за год: 5.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.