Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'β)</i>-derivative':
Найдено статей: 107
  1. Якушевич Л.В.
    Биомеханика ДНК: вращательные колебания оснований
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 319-328

    В данной работе изучаются вращательные колебания азотистых оснований, образующих центральную пару в коротком фрагменте ДНК, состоящем из трех пар оснований. Построен простой механический аналог фрагмента, в котором основания имитируются маятниками, а взаимодействия между основаниями — пружинками. Получен лагранжиан модельной системы и уравнения движения. Получены решения уравнений движения для однородного случая, когда рассматриваемый фрагмент ДНК состоит из одинаковых пар оснований: из пар аденин-тимин (AT) или гуанинцитозин (GC). Построены траектории модельной системы в конфигурационном пространстве.

    Yakushevich L.V.
    Biomechanics of DNA: rotational oscillations of bases
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 319-328

    In this paper we study the rotational oscillations of the nitrous bases forming a central pair in a short DNA fragment consisting of three base pairs. A simple mechanical analog of the fragment where the bases are imitated by pendulums and the interactions between pendulums — by springs, has been constructed. We derived Lagrangian of the model system and the nonlinear equations of motions. We found solutions in the homogeneous case when the fragment considered consists of identical base pairs: Adenine-Thymine (AT- pair) or Guanine-Cytosine (GC-pair). The trajectories of the model system in the configuration space were also constructed.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  2. Минкевич И.Г.
    Стехиометрия метаболических путей в динамике клеточных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475

    Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.

    Minkevich I.G.
    The stoichiometry of metabolic pathways in the dynamics of cellular populations
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 455-475

    The problem has been considered, to what extent the kinetic models of cellular metabolism fit the matter which they describe. Foundations of stoichiometry of the whole metabolism and its large regions have been stated. A bioenergetic representation of stoichiometry based on a universal unit of chemical compound reductivity, viz., redoxon, has been described. Equations of mass-energy balance (bioenergetic variant of stoichiometry) have been derived for metabolic flows including those of protons possessing high electrochemical potential μH+, and high-energy compounds. Interrelations have been obtained which determine the biomass yield, rate of uptake of energy source for cell growth and other important physiological quantities as functions of biochemical characteristics of cellular energetics. The maximum biomass energy yield values have been calculated for different energy sources utilized by cells. These values coincide with those measured experimentally.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
  3. Кирилюк И.Л., Волынский А.И., Круглова М.С., Кузнецова А.В., Рубинштейн А.А., Сенько О.В.
    Эмпирическая проверка теории институциональных матриц методами интеллектуального анализа данных
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 923-939

    Цель настоящего исследования состояла в установлении достоверной взаимосвязи показателей внешней среды и уровня освоенности территорий с характером доминирующих в странах институциональных матриц. Среди индикаторов внешних условий представлены как исходные статистические показатели, напрямую полученные из баз данных открытого доступа, так и сложные интегральные показатели, сформированные путем применения метода главных компонент. Оценка точности распознавания стран с доминированием X- или Y-институциональных матриц по перечисленным показателям проводилась с помощью ряда методов, основанных на машинном обучении. Была выявлена высокая информативность таких показателей, как освоенность территории, амплитуда осадков, летние и зимние температуры, уровень рисков.

    Kirilyuk I.L., Volynsky A.I., Kruglova M.S., Kuznetsova A.V., Rubinstein A.A., Sen'ko O.V.
    Empirical testing of institutional matrices theory by data mining
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 923-939

    The paper has a goal to identify a set of parameters of the environment and infrastructure with the most significant impact on institutional-matrices that dominate in different countries. Parameters of environmental conditions includes raw statistical indices, which were directly derived from the databases of open access, as well as complex integral indicators that were by method of principal components. Efficiency of discussed parameters in task of dominant institutional matrices type recognition (X or Y type) was evaluated by a number of methods based on machine learning. It was revealed that greatest informational content is associated with parameters characterizing risk of natural disasters, level of urbanization and the development of transport infrastructure, the monthly averages and seasonal variations of temperature and precipitation.

    Просмотров за год: 7. Цитирований: 13 (РИНЦ).
  4. Нестерова А.В., Денисова Н.В., Минин С.М., Анашбаев Ж.Ж., Усов В.Ю.
    Определение поправочных коэффициентов при количественной оценке костных патологических очагов методом гамма-эмиссионной томографии
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 677-696

    При обследовании методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ) пациентам с заболеваниями костной системы вводится радиофармпрепарат (РФП), который специфическим образом накапливается в патологических очагах. Количественные оценки накопления РФП в очагах важны для определения стадии заболевания, прогнозирования его течения и разработки персонализированных терапевтических стратегий. Исследования точности количественных оценок обычно проводятся на основе клинических испытаний in vitro с использованием стандартизированного вещественного фантома NEMA IEC с шестью сферами, имитирующими патологические очаги разных размеров. Однако возможности проведения таких многопараметрических экспериментальных измерений ограничены из-за высокойстоимости и лучевой нагрузки на исследователей. В данной работе развит альтернативный подход на основе имитационного компьютерного моделирования in silico с использованием цифрового двойника фантома NEMA IEC. Компьютерные эксперименты могут проводиться без ограничений с разными сценариями. По аналогии с клиническими испытаниями в численном моделировании оценивался коэффициент восстановления (RCmax), равный отношению максимального значения полученного решения в очаге к его точной величине. Условия моделирования были ориентированы на параметры клинических обследований методом ОФЭКТ/КТ с 99mTc пациентов с заболеваниями и поражениями костной системы. Впервые выполнены исследования зависимости RCmax от величины отношения «очаг/фон» и влияния постфильтрации решения. В численных экспериментах были получены краевые артефакты на изображениях очагов, аналогичные тем, которые наблюдались при измерениях на реальном фантоме NEMA IEC и в клинической практике при обследовании пациентов. Краевые артефакты приводят к нестабильности поведения решения в итерационном процессе и к ошибкам в оценке накопления РФП в очагах. Показано, что постфильтрация снижает влияние этих артефактов, обеспечивая стабильное решение. Однако при этом существенно занижаются оценки решения в небольших очагах, поэтому предложено учитывать полученные в данной работе поправочные коэффициенты при количественной оценке активности в очагах диаметром менее 20 мм.

    Nesterova A.V., Denisova N.V., Minin S.M., Anashbaev Z.Z., Usov V.Y.
    Determination of post-reconstruction correction factors for quantitative assessment of pathological bone lesions using gamma emission tomography
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 677-696

    In single-photon emission computed tomography (SPECT), patients with bone disorders receive a radiopharmaceutical (RP) that accumulates selectively in pathological lesions. Accurate quantification of RP uptake plays a critical role in disease staging, prognosis, and the development of personalized treatment strategies. Traditionally, the accuracy of quantitative assessment is evaluated through in vitro clinical trials using the standardized physical NEMA IEC phantom, which contains six spheres simulating lesions of various sizes. However, such experiments are limited by high costs and radiation exposure to researchers. This study proposes an alternative in silico approach based on numerical simulation using a digital twin of the NEMA IEC phantom. The computational framework allows for extensive testing under varying conditions without physical constraints. Analogous to clinical protocols, we calculated the recovery coefficient (RCmax), defined as the ratio of the maximum activity in a lesion to its known true value. The simulation settings were tailored to clinical SPECT/CT protocols involving 99mTc for patients with bone-related diseases. For the first time, we systematically analyzed the impact of lesion-to-background ratios and post-reconstruction filtering on RCmax values. Numerical experiments revealed the presence of edge artifacts in reconstructed lesion images, consistent with those observed in both real NEMA IEC phantom studies and patient scans. These artifacts introduce instability into the iterative reconstruction process and lead to errors in activity quantification. Our results demonstrate that post-filtering helps suppress edge artifacts and stabilizes the solution. However, it also significantly underestimates activity in small lesions. To address this issue, we introduce post-reconstruction correction factors derived from our simulations to improve the accuracy of quantification in lesions smaller than 20 mm in diameter.

  5. Потапов И.И., Снигур К.С.
    Моделирование эволюции песчано-гравийного дна канала в одномерном приближении
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 315-328

    В работе предложена математическая модель для одномерного неравновесного руслового процесса. Модель учитывает движение наносов во взвешенном и влекомом состоянии. Транспорт влекомых наносов определен с помощью оригинальной формулы, аналитически полученной из уравнения движения тонкого придонного водогрунтового слоя. Данная формула не содержит новых феноменологических параметров и учитывает влияние уклона дна, физико-механических и гранулометрических параметров донного материала на процесс транспорта влекомых наносов. Для верификации предложенной модели был решен ряд классических тестовых задач. Выполнено сравнение результатов численных расчетов с известными экспериментальными данными и результатами других авторов. Показано, что, несмотря на относительную простоту предложенной математической модели, полученные численные решения хорошо согласуются с экспериментальными данными.

    Potapov I.I., Snigur K.S.
    Modeling of sand-gravel bed evolution in one-dimension
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 315-328

    In the paper the model for a one-dimensional non-equilibrium riverbed process is proposed. The model takes into account the suspended and bed-load sediment transport. The bed-load transport is determined by using the original formula. This formula was derived from the thin bottom layer motion equation. The formula doesn’t contain new phenomenological parameters and takes into account the influence of bed slope, granulometric and physical mechanical parameters on the bed-load transport. A number of the model test problems are solved for the verification of the proposed mathematical model. The comparison of the calculation results with the established experimental data and the results of other authors is made. It was shown, that the obtained results have a good agreement with the experimental data in spite of the relative simplicity of the proposed mathematical model.

  6. Выход биомассы — отношение вновь синтезированного вещества растущих клеток к количеству потребленного субстрата — источника вещества и энергии для роста клеток. Выход является характеристикой эффективности конверсии субстрата в биомассу. Эта конверсия выполняется метаболизмом, который является полным множеством биохимических реакций, происходящих в клетках.

    В этой работе заново рассмотрена проблема предсказания максимального выхода роста живых клеток, основанная на балансе всего метаболизма клеток и его фрагментов, названных парциальными обменами (ПО). Для рассмотрения задачи использованы следующие ПО. При росте на любом субстрате мы рассматриваем стандартный конструктивный обмен (СКО), который состоит из одинаковых метаболических путей при росте различных организмов на любом субстрате. СКО начинается с нескольких стандартных соединений (узловых метаболитов): глюкоза, ацетил-КоА, $\alpha$-кетоглутарат, эритрозо-4-фосфат, оксалоацетат, рибозо-5-фосфат, 3-фосфоглицерат, фосфоенолпируват, пируват. Также рассматриваем передний метаболизм (ПМ) — остальная часть полного метаболизма. Первый ПО потребляет макроэргические связи (МЭС), образованные вторым ПО. В данной работе мы рассматриваем обобщенный вариант ПМ, когда учтены возможное наличие внеклеточных продуктов метаболизма и возможность как аэробного, так и анаэробного роста. Вместо отдельных балансов образования каждого узлового метаболита, как это было сделано в нашей предыдущей работе, данная работа имеет дело сразу со всем множеством этих метаболитов. Это делает решение задачи более компактным и требующим меньшего числа биохимических величин и значительно меньшего вычислительного времени. Выведено уравнение, выражающее максимальный выход биомассы через удельные количества МЭС, образованных и потребленных парциальными обменами. Оно содержит удельное потребление МЭС стандартным конструктивным обменом, которое является универсальным биохимическим параметром, применимым к широкому диапазону организмов и субстратов роста. Чтобы корректно определить этот параметр, полный конструктивный обмен и его передняя часть рассмотрены для роста клеток на глюкозе как наиболее изученном субстрате. Здесь мы использовали открытые ранее свойства элементного состава липидной и безлипидной частей биомассы. Было сделано численное исследование влияния вариаций соотношений между потоками через различные узловые метаболиты. Оно показало, что потребности СКО в макроэргических связях и NAD(P)H практически являются константами. Найденный коэффициент «МЭС/образованная биомасса» является эффективным средством для нахождения оценок максимального выхода биомассы из субстратов, для которых известен их первичный метаболизм. Вычисление отношения «АТФ/субстрат», необходимого для оценки выхода биомассы, сделано с помощью специального пакета компьютерных программ GenMetPath.

    Minkevich I.G.
    Estimation of maximal values of biomass growth yield based on the mass-energy balance of cell metabolism
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 723-750

    The biomass growth yield is the ratio of the newly synthesized substance of growing cells to the amount of the consumed substrate, the source of matter and energy for cell growth. The yield is a characteristic of the efficiency of substrate conversion to cell biomass. The conversion is carried out by the cell metabolism, which is a complete aggregate of biochemical reactions occurring in the cells.

    This work newly considers the problem of maximal cell growth yield prediction basing on balances of the whole living cell metabolism and its fragments called as partial metabolisms (PM). The following PM’s are used for the present consideration. During growth on any substrate we consider i) the standard constructive metabolism (SCM) which consists of identical pathways during growth of various organisms on any substrate. SCM starts from several standard compounds (nodal metabolites): glucose, acetyl-CoA 2-oxoglutarate, erythrose-4-phosphate, oxaloacetate, ribose-5- phosphate, 3-phosphoglycerate, phosphoenolpyruvate, and pyruvate, and ii) the full forward metabolism (FM) — the remaining part of the whole metabolism. The first one consumes high-energy bonds (HEB) formed by the second one. In this work we examine a generalized variant of the FM, when the possible presence of extracellular products, as well as the possibilities of both aerobic and anaerobic growth are taken into account. Instead of separate balances of each nodal metabolite formation as it was made in our previous work, this work deals at once with the whole aggregate of these metabolites. This makes the problem solution more compact and requiring a smaller number of biochemical quantities and substantially less computational time. An equation expressing the maximal biomass yield via specific amounts of HEB formed and consumed by the partial metabolisms has been derived. It includes the specific HEB consumption by SCM which is a universal biochemical parameter applicable to the wide range of organisms and growth substrates. To correctly determine this parameter, the full constructive metabolism and its forward part are considered for the growth of cells on glucose as the mostly studied substrate. We used here the found earlier properties of the elemental composition of lipid and lipid-free fractions of cell biomass. Numerical study of the effect of various interrelations between flows via different nodal metabolites has been made. It showed that the requirements of the SCM in high-energy bonds and NAD(P)H are practically constants. The found HEB-to-formed-biomass coefficient is an efficient tool for finding estimates of maximal biomass yield from substrates for which the primary metabolism is known. Calculation of ATP-to-substrate ratio necessary for the yield estimation has been made using the special computer program package, GenMetPath.

    Просмотров за год: 2.
  7. Чернов И.А.
    Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183

    Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.

    Chernov I.A.
    High-throughput identification of hydride phase-change kinetics models
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183

    Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.

  8. Говорухин В.Н., Загребнева А.Д.
    Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843

    В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.

    Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.

    Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.

    Govorukhin V.N., Zagrebneva A.D.
    Population waves and their bifurcations in a model “active predator – passive prey”
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843

    Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.

    The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.

    It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.

  9. Демидов А.С., Демидова И.В.
    О допустимой интенсивности лазерного излучения в оптической системе и о технологии измерения коэффициента поглощения его мощности
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1025-1044

    Лазерное повреждение прозрачных твердых тел является основным фактором, ограничивающим выходную мощность лазерных систем. Для лазерных дальномеров наиболее вероятной причиной разрушения элементов оптической системы (линз, зеркал), реально, как правило, несколько запыленных, является не оптический пробой в результате лавинной ионизации, а такое тепловое воздействие на пылинку, осевшую на элементе оптической системы (ЭОС), которое приводит к ее возгоранию. Именно возгорание пылинки инициирует процесс повреждения ЭОС.

    Рассматриваемая модель этого процесса учитывает нелинейный закон теплового излучения Стефана – Больцмана и бесконечное тепловое воздействие периодического излучения на ЭОСи пылинку. Эта модель описывается нелинейной системой дифференциальных уравнений для двух функций: температуры ЭОСи температуры пылинки. Доказывается, что в силу накапливающего воздействия периодического теплового воздействия процесс достиже- ния температуры возгорания пылинки происходит практически при любых априори возможных изменениях в этом процессе теплофизических параметров ЭОСи пылинки, а также коэффициентов теплообмена между ними и окружающим их воздухом. Усреднение этих параметров по переменным, относящимся как к объему, так и к поверхностям пылинки и ЭОС, корректно при указанных в работе естественных ограничениях. А благодаря рассмотрению задачи (включая численные результаты) в безразмерных единицах измерения, охвачен весь реально значимый спектр теплофизических параметров.

    Проведенное тщательное математическое исследование соответствующей нелинейной системы дифференциальных уравнений впервые позволило для общего случая теплофизических параметров и характеристик теплового воздействия периодического лазерного излучения найти формулу для значения той допустимой интенсивности излучения, которая не приводит к разрушению ЭОСв результате возгорания пылинки, осевшей на ЭОС. Найденное в работе для общего случая теоретическое значение допустимой интенсивности в частном случае данных лазерного комплекса обсерватории в г. Грассе (на юге Франции) практически соответствует полученному там экспериментальному значению.

    Наряду с решением основной задачи получена в качестве побочного результата формула для коэффициента поглощения мощности лазерного излучения элементом оптической системы, выраженная в терминах четырех безразмерных параметров: относительной интенсивности лазерного излучения, относительной освещенности ЭОС, относительного коэффициента теплоотдачи от ЭОСк окружающему его воздуху и относительной установившейся температуры ЭОС.

    Laser damage to transparent solids is a major limiting factor output power of laser systems. For laser rangefinders, the most likely destruction cause of elements of the optical system (lenses, mirrors) actually, as a rule, somewhat dusty, is not an optical breakdown as a result of avalanche, but such a thermal effect on the dust speck deposited on an element of the optical system (EOS), which leads to its ignition. It is the ignition of a speck of dust that initiates the process of EOS damage.

    The corresponding model of this process leading to the ignition of a speck of dust takes into account the nonlinear Stefan –Boltzmann law of thermal radiation and the infinite thermal effect of periodic radiation on the EOS and the speck of dust. This model is described by a nonlinear system of differential equations for two functions: the EOS temperature and the dust particle temperature. It is proved that due to the accumulating effect of periodic thermal action, the process of reaching the dust speck ignition temperature occurs almost at any a priori possible changes in this process of the thermophysical parameters of the EOS and the dust speck, as well as the heat exchange coefficients between them and the surrounding air. Averaging these parameters over the variables related to both the volume and the surfaces of the dust speck and the EOS is correct under the natural constraints specified in the paper. The entire really significant spectrum of thermophysical parameters is covered thanks to the use of dimensionless units in the problem (including numerical results).

    A thorough mathematical study of the corresponding nonlinear system of differential equations made it possible for the first time for the general case of thermophysical parameters and characteristics of the thermal effect of periodic laser radiation to find a formula for the value of the permissible radiation intensity that does not lead to the destruction of the EOS as a result of the ignition of a speck of dust deposited on the EOS. The theoretical value of the permissible intensity found in the general case in the special case of the data from the Grasse laser ranging station (south of France) almost matches that experimentally observed in the observatory.

    In parallel with the solution of the main problem, we derive a formula for the power absorption coefficient of laser radiation by an EOS expressed in terms of four dimensionless parameters: the relative intensity of laser radiation, the relative illumination of the EOS, the relative heat transfer coefficient from the EOS to the surrounding air, and the relative steady-state temperature of the EOS.

  10. Остроухов П.А., Камалов Р.А., Двуреченский П.Е., Гасников А.В.
    Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376

    В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.

    Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.

    Ostroukhov P.A., Kamalov R.A., Dvurechensky P.E., Gasnikov A.V.
    Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376

    In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.

    For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.

    Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.

    Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.