Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'β)</i>-производная':
Найдено статей: 92
  1. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

  2. Омарова А.Г., Бейбалаев В.Д.
    Численное решение третьей начально-краевой задачи для нестационарного уравнения теплопроводности с дробными производными
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1345-1360

    В последнее время для описания различных математических моделей физических процессов широко используется дробно-дифференциальное исчисление. В связи с этим большое внимание уделяется уравнениям в частных производных дробного порядка, которые являются обобщением уравнений в частных производных целого порядка.

    Нагруженными дифференциальными уравнениями в литературе называют уравнения, содержащие значения решения или его производных на многообразиях меньшей размерности, чем размерность области определения искомой функции. В настоящее время широко используются численные методы для решения нагруженных уравнений в частных производных целого и дробного порядка, поскольку аналитические методы решения сложны в реализации. Достаточно эффективным методом численного решения такого рода задач является метод конечных разностей, или метод сеток.

    Исследована начально-краевая задача в прямоугольнике $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ для нагруженного дифференциального уравнения теплопроводности с композицией дробной производной Римана – Лиувилля и Капуто – Герасимова и с граничными условиями первого и третьего рода. С помощью метода энергетических неравенств получена априорная оценка в дифференциальной и в разностной форме. Полученные неравенства означают единственность решения и непрерывную зависимость решения от входных данных задачи. Получен разностный аналог для композиции дробной производной Римана – Лиувилля и Капуто – Герасимова порядка $(2-\beta )$ и построена разностная схема, аппроксимирующая исходную задачу с порядком $O\left(\tau +h^{2-\beta } \right)$. Доказана сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы.

  3. В работе рассматривается задача параметрической идентификации дискретных линейных стохастических систем, представленных уравнениями в пространстве состояний, с аддитивными и мультипликативными шумами. Предполагается, что уравнения состояния и измерения дискретной линейной стохастической системы зависят от неизвестного параметра, подлежащего идентификации.

    Представлен новый подход к построению градиентных методов параметрической идентификации в классе дискретных линейных стохастических систем с аддитивными и мультиплика- тивными шумами, основанный на применении модифицированной взвешенной ортогонализации Грама – Шмидта (MWGS) и алгоритмов дискретной фильтрации информационного типа.

    Основными теоретическими результатами данной работы являются: 1) новый критерий идентификации в терминах расширенного информационного LD-фильтра; 2) новый алгоритм вычисления значений производных по параметру неопределенности дискретной линейной стохастической системы в расширенном информационном LD-фильтре на основе прямой процедуры модифицированной взвешенной ортогонализации Грама – Шмидта; 3) новый метод вычисления градиента критерия идентификации на основе предложенного дифференцированного расширенного информационного LD-фильтра.

    Преимуществом предложенного подхода является применение численно устойчивой к ошибкам машинного округления MWGS-ортогонализации, лежащей в основе разработанных методов и алгоритмов. Информационный LD-фильтр сохраняет симметричность и положительную определенность информационных матриц. Разработанные алгоритмы имеют блочно-матричную структуру, удобную для компьютерной реализации.

    Все разработанные алгоритмы реализованы на языке MATLAB. Проведены серии численных экспериментов, результаты которых демонстрируют работоспособность предложенного подхода на примере решения задачи идентификации параметров математической модели сложной механической системы.

    Полученные результаты могут быть использованы для построения методов параметрической идентификации математических моделей, представленных в пространстве состояний дискретными линейными стохастическими системами с аддитивными и мультипликативными шумами.

  4. Мокин А.Ю.
    Корректность семейства задач с неклассическим краевым условием
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 139-146

    Методом разделения переменных решена одномерная задача параболического типа с нелокальными краевыми условиями, содержащими вещественный параметр. Рассмотренные краевые условия не являются усиленно регулярными ни при каком значении параметра. Система собственных функций оператора второй производной, подчиненного краевым условиям исходной задачи, не обладает свойством базисности. Априорные оценки решения, полученные в работе, означают устойчивость решения по начальным данным.

    Просмотров за год: 2.
  5. Силаев Д.А.
    Полулокальные сглаживающие S-сплайны
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 349-357

    Настоящая работа посвящена периодическим и непериодическим полулокальным сглаживающим сплайнам или S-сплайнам класса Cp, состоящим из полиномов степени n.
    Первые p + 1 коэффициентов каждого полинома задаются значениями предыдущего полинома и его p первых производных в точке склейки, остальные np коэффициентов при старших производных полинома определяются методом наименьших квадратов. Эти условия дополняются или начальными условиями (непериодический случай), или условием периодичности сплайн-функции на отрезке определения. В работе выписана система линейных уравнений, определяющих коэффициенты полиномов, составляющих сплайн. Матрица системы имеет блочный вид. Доказаны теоремы существования и единственности. Показано, что сходимость сплайнов к исходной функции зависит от величин собственных значений матрицы устойчивости. Приведены примеры устойчивых S-сплайнов.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  6. Паровик Р.И.
    Математическое моделирование эредитарного осциллятора
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1001-1021

    В работе рассматривается эредитарный осциллятор, который характеризуется осцилляционным уравнением с производными дробных порядков $\beta$ и $\gamma$ в смысле Герасимова–Капуто. С помощью преобразования Лапласа были получены аналитические решения и функция Грина, которые определяются через специальные функции типа Миттаг-Леффлера и обобщенной функции Райта. Доказано, что при фиксированных значениях $\beta = 2$ и $\gamma = 1$ найденное решение переходит в классическое решение для гармонического осциллятора. Согласно полученным решениям были построены расчетные кривые и фазовые траектории эредитарного колебательного процесса. Установлено, что в случае внешнего периодического воздействия на эредитарный осциллятор могут возникать эффекты, присущие классическим нелинейным осцилляторам.

    Просмотров за год: 4. Цитирований: 12 (РИНЦ).
  7. Матюшкин И.В.
    Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 1
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 167-186

    Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС).

    Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двухслоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек.

    Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта–Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике.

    Просмотров за год: 6.
  8. Проведен сравнительный анализ двух численных методик моделирования нестационарных режимов термогравитационной конвекции и теплового поверхностного излучения в замкнутой дифференциально обогреваемой кубической полости. Рассматриваемая область решения имела две изотермические противоположные вертикальные грани, остальные стенки являлись адиабатическими. Поверхности стенок считались диффузно-серыми, т. е. их направленные спектральные степень черноты и поглощательная способность не зависят ни от угла, ни от длины волны, но могут зависеть от температуры поверхности. Относительно отраженного излучения использовались два предположения: 1) отраженное излучение является диффузным, т. е. интенсивность отраженного излучения в любой точке границы поверхности равномерно распределена по всем направлениям; 2) отраженное излучение равномерно распределено по каждой поверхности замкнутой области решения. Математическая модель, сформулированная как в естественных переменных «скорость–давление», так и в преобразованных переменных «векторный потенциал–вектор завихренности», реализована численно методом контрольного объема и методом конечных разностей соответственно. Следует отметить, что анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка.

    При решении краевой задачи в естественных переменных методом контрольного объема для аппроксимации конвективных слагаемых применялся степенной закон, для диффузионных слагаемых — центральные разности. Разностные уравнения движения и энергии разрешались на основе итерационного метода переменных направлений. Для поиска поля давления, согласованного с полем скорости, применялась процедура SIMPLE.

    В случае метода конечных разностей и преобразованных переменных для аппроксимации конвективных слагаемых применялась монотонная схема Самарского, для диффузионных слагаемых — центральные разности. Уравнения параболического типа разрешались на основе локально-одномерной схемы Самарского. Дискретизация уравнений эллиптического типа для компонент векторного потенциала проводилась с использованием формул симметричной аппроксимации вторых производных. При этом полученное разностное уравнение разрешалось методом последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов.

    В результате показано полное согласование полученных распределений скорости и температуры при различных значениях числа Рэлея, что отражает работоспособность представленных методик. Продемонстрирована эффективность использования преобразованных переменных и метода конечных разностей при решении класса нестационарных задач.

    Просмотров за год: 13. Цитирований: 1 (РИНЦ).
  9. В работе изучается класс дифференциальных уравнений типа Клеро в частных производных первого порядка, которые представляют собой многомерное обобщение обыкновенного дифференциального уравнения Клеро на случай, когда искомая функция зависит от многих переменных. Известно, что общее решение дифференциального уравнения типа Клеро в частных производных представляет собой семейство интегральных (гипер-) плоскостей. Помимо общего решения, могут существовать частные решения, а в некоторых частных случаях удается найти особое (сингулярное) решение.

    Целью работы является нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных первого порядка со специальной правой частью. В работе сформулирован критерий существования особого решения дифференциального уравнения типа Клеро в частных производных для случая, когда функция от производных представляет собой функцию от линейной комбинации частных производных. Получены сингулярные решения для данного типа дифференциальных уравнений с тригонометрическими функциями от линейной комбинации $n$-независимых переменных с произвольными коэффициентами. Показано, что задача нахождения особого решения сводится к решению системы трансцендентных уравнений, содержащих исходные тригонометрические функции. В статье описана процедура нахождения сингулярного решения уравнения типа Клеро, основная идея которой заключается в нахождении не частных производных искомой функции, как функций независимых переменных, а линейных комбинаций частных производных с некоторыми коэффициентами. Данный метод может быть применен для нахождения особых решений уравнений типа Клеро, для которых данная структура сохраняется.

    Работа организована следующим образом. Введение содержит краткий обзор некоторых современных результатов, имеющих отношение к теме исследования уравнений типа Клеро. Вторая часть является основной, в ней сформулирована задача работы и описан метод поиска сингулярных решений дифференциальных уравнениях типа Клеро в частных производных со специальной правой частью. Основным результатом работы является нахождение сингулярных решений уравнений, содержащих тригонометрические функции, приведенные в основной части работы в качестве примеров, иллюстрирующих описанный ранее метод. В заключении сформулированы результаты работы и обсуждается направление дальнейших исследований.

  10. Суров В.С.
    Релаксационная модель вязкого теплопроводного газа
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 23-43

    Представлена гиперболическая модель вязкого теплопроводного газа, в которой для гиперболизации уравнений использован подход Максвелла–Каттанео, обеспечивающий распространение волн с конечными скоростями. В модифицированной модели вместо оригинальных законов Стокса и Фурье использовались их релаксационные аналоги и показано, что при стремлении времен релаксации $\tau_\sigma^{}$ и $\tau_w^{}$ к нулю гиперболизированные уравнения приводятся к классической системе Навье–Стокса негиперболического типа с бесконечными скоростями перемещения вязких и тепловых волн. Отмечено, что рассматриваемая в работе гиперболизированная система уравнений движения вязкого теплопроводного газа инвариантна не только по отношению к преобразованиям Галилея, но и к повороту, поскольку при дифференцировании по времени компонентов тензора вязких напряжений использована производная Яуманна. Для интегрирования уравнений модели применены гибридный метод Годунова (ГМГ) и многомерный узловой метод характеристик. ГМГ предназначен для интегрирования гиперболических систем, в которых имеются как уравнения, записанные в дивергентном виде, так и уравнения, не приводящиеся к таковому (оригинальный метод Годунова применяется только для систем уравнений, представленных в дивергентной форме). При вычислении потоковых переменных на гранях смежных ячеек использован линеаризованный римановский решатель. Для дивергентных уравнений применена конечно-объемная, а для недивергентных — конечноразностная аппроксимация. Для расчета ряда задач в работе также использовался неконсервативный многомерный узловой метод характеристик, который базируется на расщеплении исходной системы уравнений на ряд одномерных подсистем, для решения которых использован одномерный узловой метод характеристик. С помощью описанных численных методов решен ряд модельных одномерных задач о распаде произвольного разрыва, а также рассчитано двумерное течение вязкого газа при взаимодействии ударного скачка с прямоугольной ступенькой, непроницаемой для газа.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.