Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'transfer equations':
Найдено статей: 52
  1. Гаспарян М.М., Самонов А.С., Сазыкина Т.А., Остапов Е.Л., Сакмаров А.В., Шайхатаров О.К.
    Решатель уравнения Больцмана на неструктурированных пространственных сетках
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447

    Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.

    Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.

    Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.

    В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.

    Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.

    Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.

    Gasparyan M.M., Samonov A.S., Sazykina T.A., Ostapov E.L., Sakmarov A.V., Shahatarov O.K.
    The Solver of Boltzmann equation on unstructured spatial grids
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447

    The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.

    In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.

    A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.

    The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.

    The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.

    The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.

    Просмотров за год: 13.
  2. Стогний П.В., Петров И.Б.
    Численное моделирование распространения сейсмических волн в моделях с ледовым полем в зоне арктического шельфа
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 73-82

    В зоне арктического шельфа расположены огромные запасы углеводородов. Проведение исследовательских работ на данной территории осложняется наличием различных ледовых образований, например айсбергов, торосов, ледовых полей. Во время проведения сейсморазведочных работ последние из выше перечисленных ледовых образований, ледовые поля, вносят в сейсмограммы многочисленные отражения сейсмического сигнала от границ «лед–вода» и «лед–воздух», распространяющиеся по всей поверхности льда. Данные многочисленные отражения необходимо учитывать при анализе сейсмограмм, а также уметь их исключать с целью получения отраженных волн от нижележащих геологических слоев, включая залежи углеводородов.

    В работе решается задача о распространении сейсмических волн в неоднородной среде. Геологические среды описываются системами уравнений линейной упругости и акустики. Представлено подробное описание численного решения данных систем уравнений с помощью сеточно-характеристического метода. Для решения конечных одномерных уравнений переноса, к которым приводятся системы, применяется схема Русанова третьего порядка точности. В работе рассматривается способ подавления многочисленных отражений во льду путем заглубления источника сейсмического сигнала вплоть до границы с водой. Такой способ подавления кратных волн часто используется в реальных геологических работах. Представлены результаты численных расчетов распространения сейсмических волн в моделях с заглубленным источником импульса, а также в моделях с сейсмическим источником на поверхности льда для трехмерного случая. Результатами численного моделирования являются волновые картины, графики значений продольной компоненты скорости и сейсмограммы для двух рассматриваемых постановок задач. В работе проводится анализ влияния различных постановок источника на уменьшение продольных компонент скорости в слое льда, на результирующие сейсмограммы и волновые поля. Делается вывод о том, что заглубление источника только ухудшает конечный результат при условии помещения источника и приемников сигнала на границе «лед–вода». Уменьшение продольных компонент скорости во льду показала постановка источника на поверхности льда.

    Stognii P.V., Petrov I.B.
    Numerical modelling of seismic waves spread in models with an ice field in the arctic shelf
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 73-82

    The Arctic region contains large hydrocarbon deposits. The presence of different ice formations, such as icebergs, ice hummocks, ice fields, complicates the process of carrying out seismic works on the territory. The last of them, ice fields, bring multiple reflections, spreading all over the surface of ice, into seismogramms. These multiple reflections are necessary to be taken into account while analyzing the seismograms, and geologists should be able to exclude them in order to obtain the reflected waves from the lower geological layers, including hydrocarbon layers.

    In this work, we solve the problem of the seismic waves spread in the heterogeneous medium. The systems of equations for the linear elastic medium and for the acoustic medium describe the geological layers. We present the detailed description of the numerical solution of these systems of equations with the help of the grid-characteristic method. The final 1D transfer equations are solved with the use of the Rusanov scheme of the third order of accuracy. In the work, we examine the way of multiple waves decrease in ice by establishing the source of impulse deep into the ice field on border with water. We present the results of computer modelling of the seismic waves spread in geological layers, where the seismic source of impulse is situated on the contact border between ice and water, and also with the seismic source of impulse on the surface of ice for the 3D case. The results of the numerical modelling are presented by wave fields, graphs of the velocity x-components and seismogramms for the two problem formulations. We carry out the analysis of influence of establishing the source of impulse on the border between ice and water on the decrease of the x-components of seismic wave velocities, on seismogramms and on wave fields. As a result, the model, where the seismic source of impulse is situated on the contact border between ice and water, makes worse the final result. The model with the source of impulse on the surface of ice demonstrates a decrease of the x-components of seismic wave velocities.

  3. Волошин А.С., Конюхов А.В., Панкратов Л.С.
    Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580

    Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.

    Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  4. Назаров Ф.Х.
    Численное исследование высокоскоростных слоев смешения на основе двухжидкостной модели турбулентности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1125-1142

    Данная работа посвящена численному исследованию высокоскоростных слоев смешения сжимаемых потоков. Рассматриваемая задача имеет широкий спектр применения в практических задачах и, несмотря на кажущуюся простоту, является достаточно сложной в плане моделирования, потому что в слое смешения в результате неустойчивости тангенциального разрыва скоростей поток от ламинарного течения переходит к турбулентному режиму. Поэтому полученные численные результаты рассмотренной задачи сильно зависят от адекватности используемых моделей турбулентности. В представленной работе данная задача исследуется на основе двухжидкостного подхода к проблеме турбулентности. Данный подход возник сравнительно недавно и достаточно быстро развивается. Главное преимущество двухжидкостного подхода — в том, что он ведет к замкнутой системе уравнений, тогда как известно, что давний подход Рейнольдса ведет к незамкнутой системе. В работе представлены суть двухжидкостного подхода для моделирования турбулентной сжимаемой среды и методика численной реализации предлагаемой модели. Для получения стационарного решения поставленной задачи применен метод установления и использована теория пограничного слоя Прандтля, которая ведет к упрощенной системе уравнений. В рассматриваемой задаче происходит смешение высокоскоростных потоков. Следовательно, необходимо моделировать также перенос тепла и давление нельзя считать постоянным, как это делается для несжимаемых потоков. При численной реализации конвективные члены в гидродинамических уравнениях аппроксимировались против потока вторым порядка точности в явном виде, а диффузионные члены в правых частях уравнений аппроксимировались центральной разностью в неявном виде. Для реализации полученных уравнений использовался метод прогонки. Для коррекции скорости через давления использован метод SIMPLE. В работе проведено исследование двухжидкостной модели турбулентности при различных начальных возмущениях потока. Полученные численные результаты показали, что хорошее соответствие с известными опытными данными наблюдается при интенсивности турбулентности на входе $0,1 < I < 1 \%$. Для демонстрации эффективности предлагаемой модели турбулентности представлены также данные известных экспериментов, а также результаты моделей $k − kL + J$ и LES. Показано, что двухжидкостная модель по точности не уступает известным современным моделям, а по затрате вычислительных ресурсов является более экономичной.

    Nazarov F.K.
    Numerical study of high-speed mixing layers based on a two-fluid turbulence model
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1125-1142

    This work is devoted to the numerical study of high-speed mixing layers of compressible flows. The problem under consideration has a wide range of applications in practical tasks and, despite its apparent simplicity, is quite complex in terms of modeling. Because in the mixing layer, as a result of the instability of the tangential discontinuity of velocities, the flow passes from laminar flow to turbulent mode. Therefore, the obtained numerical results of the considered problem strongly depend on the adequacy of the used turbulence models. In the presented work, this problem is studied based on the two-fluid approach to the problem of turbulence. This approach has arisen relatively recently and is developing quite rapidly. The main advantage of the two-fluid approach is that it leads to a closed system of equations, when, as is known, the long-standing Reynolds approach leads to an open system of equations. The paper presents the essence of the two-fluid approach for modeling a turbulent compressible medium and the methodology for numerical implementation of the proposed model. To obtain a stationary solution, the relaxation method and Prandtl boundary layer theory were applied, resulting in a simplified system of equations. In the considered problem, high-speed flows are mixed. Therefore, it is also necessary to model heat transfer, and the pressure cannot be considered constant, as is done for incompressible flows. In the numerical implementation, the convective terms in the hydrodynamic equations were approximated by the upwind scheme with the second order of accuracy in explicit form, and the diffusion terms in the right-hand sides of the equations were approximated by the central difference in implicit form. The sweep method was used to implement the obtained equations. The SIMPLE method was used to correct the velocity through the pressure. The paper investigates a two-liquid turbulence model with different initial flow turbulence intensities. The obtained numerical results showed that good agreement with the known experimental data is observed at the inlet turbulence intensity of $0.1 < I < 1 \%$. Data from known experiments, as well as the results of the $k − kL + J$ and LES models, are presented to demonstrate the effectiveness of the proposed turbulence model. It is demonstrated that the two-liquid model is as accurate as known modern models and more efficient in terms of computing resources.

  5. Черепанов В.В.
    Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91

    В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.

    Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.

    Cherepanov V.V.
    Modeling the thermal field of stationary symmetric bodies in rarefied low-temperature plasma
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 73-91

    The work investigates the process of self-consistent relaxation of the region of disturbances created in a rarefied binary low-temperature plasma by a stationary charged ball or cylinder with an absorbing surface. A feature of such problems is their self-consistent kinetic nature, in which it is impossible to separate the processes of transfer in phase space and the formation of an electromagnetic field. A mathematical model is presented that makes it possible to describe and analyze the state of the gas, electric and thermal fields in the vicinity of the body. The multidimensionality of the kinetic formulation creates certain problems in the numerical solution, therefore a curvilinear system of nonholonomic coordinates was selected for the problem, which minimizes its phase space, which contributes to increasing the efficiency of numerical methods. For such coordinates, the form of the Vlasov kinetic equation has been justified and analyzed. To solve it, a variant of the large particle method with a constant form factor was used. The calculations used a moving grid that tracks the displacement of the distribution function carrier in the phase space, which further reduced the volume of the controlled region of the phase space. Key details of the model and numerical method are revealed. The model and the method are implemented as code in the Matlab language. Using the example of solving a problem for a ball, the presence of significant disequilibrium and anisotropy in the particle velocity distribution in the disturbed zone is shown. Based on the calculation results, pictures of the evolution of the structure of the particle distribution function, profiles of the main macroscopic characteristics of the gas — concentration, current, temperature and heat flow, and characteristics of the electric field in the disturbed region are presented. The mechanism of heating of attracted particles in the disturbed zone is established and some important features of the process of formation of heat flow are shown. The results obtained are well explainable from a physical point of view, which confirms the adequacy of the model and the correct operation of the software tool. The creation and testing of a basis for the development in the future of tools for solving more complex problems of modeling the behavior of ionized gases near charged bodies is noted.

    The work will be useful to specialists in the field of mathematical modeling, heat and mass transfer processes, lowtemperature plasma physics, postgraduate students and senior students specializing in the indicated areas.

  6. Губанов С.М., Дурновцев М.И., Картавых А.А., Крайнов А.Ю.
    Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529

    В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.

    Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  7. Горшков А.В., Просвиряков Е.Ю.
    Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940

    В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.

    Gorshkov A.V., Prosviryakov Y.Y.
    Layered B&eacute;nard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Просмотров за год: 10. Цитирований: 3 (РИНЦ).
  8. Жлуктов С.В., Аксёнов А.А., Савицкий Д.В.
    Высокорейнольдсовые расчеты турбулентного теплопереноса в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 461-481

    В работе представлена модель тепловых пристеночных функций FlowVision (WFFV), позволяющая моделировать неизотермические течения жидкости и газа около твердых поверхностей на относительно грубых сетках с использованием различных моделей турбулентности. Настоящая работа продолжает исследование по разработке модели пристеночных функций, применимой в широком диапазоне значений величины y+. Модель WFFV предполагает гладкие профили касательной составляющей скорости, турбулентной вязкости, температуры и турбулентной теплопроводности около твердой поверхности. В работе исследуется возможность использования простой алгебраической модели для вычисления переменного турбулентного числа Прандтля, входящего в модель WFFV в качестве параметра. Результаты удовлетворительные. Обсуждаются особенности реализации модели WFFV в программном комплексе FlowVision. В частности, обсуждается граничное условие для уравнения энергии, используемое в высокорейнольдсовых расчетах неизотермических течений. Граничное условие выводится для уравнения энергии, записанного через термодинамическую энтальпию, и для уравнения энергии, записанного через полную энтальпию. Возможности модели демонстрируются на двух тестовых задачах: течение несжимаемой жидкости около пластины и сверхзвуковое течение газа около пластины (M = 3).

    Анализ литературы показывает, что в экспериментальных данных и, как следствие, в эмпирических корреляциях для числа Стэнтона (безразмерного теплового потока) присутствует существенная неопределенность. Результаты расчетов дают основание полагать, что значения параметров модели WFFV, автоматически задаваемые в программе по умолчанию, позволяют рассчитывать тепловые потоки на твердых протяженных поверхностях с инженерной погрешностью. В то же время очевидно, что невозможно изобрести универсальные пристеночные функции. По этой причине управляющие параметры модели WFFV выведены в интерфейс FlowVision. При необходимости пользователь может настраивать модель на нужный класс течений.

    Предлагаемая модель пристеночных функций совместима со всеми реализованными в программном комплексе FlowVision моделями турбулентности: Смагоринского, Спаларта–Аллмараса, SST $k-\omega$, $k-\varepsilon$ стандартной, $k-\varepsilon$ Abe Kondoh Nagano, $k-\varepsilon$ квадратичной и $k-\varepsilon$ FlowVision.

    Zhluktov S.V., Aksenov A.A., Savitskiy D.V.
    High-Reynolds number calculations of turbulent heat transfer in FlowVision software
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 461-481

    This work presents the model of heat wall functions FlowVision (WFFV), which allows simulation of nonisothermal flows of fluid and gas near solid surfaces on relatively coarse grids with use of turbulence models. The work follows the research on the development of wall functions applicable in wide range of the values of quantity y+. Model WFFV assumes smooth profiles of the tangential component of velocity, turbulent viscosity, temperature, and turbulent heat conductivity near a solid surface. Possibility of using a simple algebraic model for calculation of variable turbulent Prandtl number is investigated in this study (the turbulent Prandtl number enters model WFFV as parameter). The results are satisfactory. The details of implementation of model WFFV in the FlowVision software are explained. In particular, the boundary condition for the energy equation used in high-Reynolds number calculations of non-isothermal flows is considered. The boundary condition is deduced for the energy equation written via thermodynamic enthalpy and via full enthalpy. The capability of the model is demonstrated on two test problems: flow of incompressible fluid past a plate and supersonic flow of gas past a plate (M = 3).

    Analysis of literature shows that there exists essential ambiguity in experimental data and, as a consequence, in empirical correlations for the Stanton number (that being a dimensionless heat flux). The calculations suggest that the default values of the model parameters, automatically specified in the program, allow calculations of heat fluxes at extended solid surfaces with engineering accuracy. At the same time, it is obvious that one cannot invent universal wall functions. For this reason, the controls of model WFFV are made accessible from the FlowVision interface. When it is necessary, a user can tune the model for simulation of the required type of flow.

    The proposed model of wall functions is compatible with all the turbulence models implemented in the FlowVision software: the algebraic model of Smagorinsky, the Spalart-Allmaras model, the SST $k-\omega$ model, the standard $k-\varepsilon$ model, the $k-\varepsilon$ model of Abe, Kondoh, Nagano, the quadratic $k-\varepsilon$ model, and $k-\varepsilon$ model FlowVision.

    Просмотров за год: 23.
  9. Конюхов В.М., Конюхов И.В., Чекалин А.Н.
    Numerical Simulation, Parallel Algorithms and Software for Performance Forecast of the System “Fractured-Porous Reservoir – Producing Well” During its Commissioning Into Operation
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1069-1075

    The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.

    Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.

    The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.

    Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.

  10. Сорокин К.Э., Бывальцев П.М., Аксенов А.А., Жлуктов С.В., Савицкий Д.В., Бабулин А.А., Шевяков В.И.
    Численное моделирование обледенения в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 83-96

    Процедура сертификации самолетов транспортной категории для полетов в условиях обледенения требует проведения расчетов форм и размеров ледяных наростов, образующихся на поверхностях самолетов в различные моменты времени. В настоящее время отсутствует программный продукт российской разработки, предназначенный для численного моделирования обледенения, признанный российскими сертификационными органами. В данной работе описывается методика расчета обледенения самолетов IceVision, созданная на базе программного комплекса FlowVision.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume Of Fluid (VOF — объем жидкости в ячейке) для отслеживания нарастания льда. В этой методике решается нестационарная задача непрерывного нарастания льда в эйлеровой постановке. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В других (известных из литературы) подходах изменение формы льда учитывается путем модификации аэродинамической поверхности с использованием лагранжевой сетки, а для учета теплоотдачи в лед используется некоторая эмпирическая модель.

    Реализованная во FlowVision математическая модель предполагает возможность моделирования сухого и влажного режимов обледенения. Модель автоматически определяет зоны сухого и влажного льда. В сухой зоне температура контактной поверхности определяется с учетом сублимации льда и теплопереноса во льду. Во влажной зоне учитывается течение водяной пленки по поверхности льда. Пленка замерзает за счет испарения, теплоотдачи в лед и в воздух. Методика IceVision учитывает отрыв пленки. Для моделирования двухфазного течения воздуха и капель используется многоскоростная модель взаимопроникающих континуумов в рамках эйлерова подхода. Методика IceVision учитывает распределение капель по размерам. Численный алгоритм учитывает существенное различие временных масштабов физических процессов, сопровождающих обледенение самолета: двухфазного внешнего течения (воздуха и капель), течения водяной пленки, роста льда. В работе приводятся результаты решения тестовых задач, демонстрирующие эффективность методики IceVision и достоверность результатов FlowVision.

    Sorokin K.E., Byvaltsev P.M., Aksenov A.A., Zhluktov S.V., Savitskiy D.V., Babulin A.A., Shevyakov V.I.
    Numerical simulation of ice accretion in FlowVision software
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 83-96

    Certifying a transport airplane for the flights under icing conditions requires calculations aimed at definition of the dimensions and shapes of the ice bodies formed on the airplane surfaces. Up to date, software developed in Russia for simulation of ice accretion, which would be authorized by Russian certifying supervisory authority, is absent. This paper describes methodology IceVision recently developed in Russia on the basis of software FlowVision for calculations of ice accretion on airplane surfaces.

    The main difference of methodology IceVision from the other approaches, known from literature, consists in using technology Volume Of Fluid (VOF — volume of fluid in cell) for tracking the surface of growing ice body. The methodology assumes solving a time-depended problem of continuous grows of ice body in the Euler formulation. The ice is explicitly present in the computational domain. The energy equation is integrated inside the ice body. In the other approaches, changing the ice shape is taken into account by means of modifying the aerodynamic surface and using Lagrangian mesh. In doing so, the heat transfer into ice is allowed for by an empirical model.

    The implemented mathematical model provides capability to simulate formation of rime (dry) and glaze (wet) ice. It automatically identifies zones of rime and glaze ice. In a rime (dry) ice zone, the temperature of the contact surface between air and ice is calculated with account of ice sublimation and heat conduction inside the ice. In a glaze (wet) ice zone, the flow of the water film over the ice surface is allowed for. The film freezes due to evaporation and heat transfer inside the air and the ice. Methodology IceVision allows for separation of the film. For simulation of the two-phase flow of the air and droplets, a multi-speed model is used within the Euler approach. Methodology IceVision allows for size distribution of droplets. The computational algorithm takes account of essentially different time scales for the physical processes proceeding in the course of ice accretion, viz., air-droplets flow, water flow, and ice growth. Numerical solutions of validation test problems demonstrate efficiency of methodology IceVision and reliability of FlowVision results.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.