Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'time-optimal problem':
Найдено статей: 59
  1. Решитько М.А., Усов А.Б.
    Нейросетевой подход к исследованию задач оптимального управления
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557

    В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.

    Reshitko M.A., Usov A.B.
    Neural network methods for optimal control problems
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 539-557

    In this study we discuss methods to solve optimal control problems based on neural network techniques. We study hierarchical dynamical two-level system for surface water quality control. The system consists of a supervisor (government) and a few agents (enterprises). We consider this problem from the point of agents. In this case we solve optimal control problem with constraints. To solve this problem, we use Pontryagin’s maximum principle, with which we obtain optimality conditions. To solve emerging ODEs, we use feedforward neural network. We provide a review of existing techniques to study such problems and a review of neural network’s training methods. To estimate the error of numerical solution, we propose to use defect analysis method, adapted for neural networks. This allows one to get quantitative error estimations of numerical solution. We provide examples of our method’s usage for solving synthetic problem and a surface water quality control model. We compare the results of this examples with known solution (when provided) and the results of shooting method. In all cases the errors, estimated by our method are of the same order as the errors compared with known solution. Moreover, we study surface water quality control problem when no solutions is provided by other methods. This happens because of relatively large time interval and/or the case of several agents. In the latter case we seek Nash equilibrium between agents. Thus, in this study we show the ability of neural networks to solve various problems including optimal control problems and differential games and we show the ability of quantitative estimation of an error. From the numerical results we conclude that the presence of the supervisor is necessary for achieving the sustainable development.

  2. Акиндинов Г.Д., Матюхин В.В., Криворотько О.И.
    Численное решение обратной задачи для уравнения гиперболической теплопроводности с малым параметром
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 245-258

    В данной работе приведен алгоритм численного решения обратной начально-краевой задачи для гиперболического уравнения с малым параметром перед второй производной по времени, которая состоит в нахождении начального распределения по заданному конечному. Данный алгоритм позволяет для заданной наперед точности получить решение задачи (в допустимых пределах точности). Данный алгоритм позволяет избежать сложностей, аналогичных случаю с уравнением теплопроводности с обращенным временем. Предложенный алгоритм позволяет подобрать оптимальный размер конечно-разностной схемы путем обучения на относительно больших разбиениях сетки и малом числе итераций градиентного метода. Предложенный алгоритм позволяет получить оценку для константы Липшица градиента целевого функционала. Также представлен способ оптимального выбора малого параметра при второй производной для ускорения решения задачи. Данный подход может быть применен и в других задачах с похожей структурой, например в решении уравнений состояния плазмы, в социальных процессах или в различных биологических задачах. Новизна данной работы заключается в разработке оптимальной процедуры выбора размера шага путем применения экстраполяции Ричардсона и обучения на малых размерах сетки для решения задач оптимизации с неточным градиентом в обратных задачах.

    Akindinov G.D., Matyukhin V.V., Krivorotko O.I.
    Numerical solving of an inverse problem of a hyperbolic heat equation with small parameter
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 245-258

    In this paper we describe an algorithm of numerical solving of an inverse problem on a hyperbolic heat equation with additional second time derivative with a small parameter. The problem in this case is finding an initial distribution with given final distribution. This algorithm allows finding a solution to the problem for any admissible given precision. Algorithm allows evading difficulties analogous to the case of heat equation with inverted time. Furthermore, it allows finding an optimal grid size by learning on a relatively big grid size and small amount of iterations of a gradient method and later extrapolates to the required grid size using Richardson’s method. This algorithm allows finding an adequate estimate of Lipschitz constant for the gradient of the target functional. Finally, this algorithm may easily be applied to the problems with similar structure, for example in solving equations for plasma, social processes and various biological problems. The theoretical novelty of the paper consists in the developing of an optimal procedure of finding of the required grid size using Richardson extrapolations for optimization problems with inexact gradient in ill-posed problems.

  3. Белотелов В.Н., Дарьина А.Н.
    Метод поиска касательных в задаче быстродействия для колесного мобильного робота
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 401-421

    Поиск оптимальной траектории движения является нетривиальной задачей, на решение которой направлено большое число исследований. Большинство этих исследований посвящено решению задачи в общем виде вне зависимости от модели движения объекта. В такой постановке поиск оптимальной траектории возможен только численными методами. Вместе с тем в некоторых случаях возможно нахождение оптимальной траектории в аналитическом виде. В данной статье рассмотрена задача быстродействия с фазовыми ограничениями для колесного мобильного робота, движущегося по горизонтальной плоскости. Математическая модель робота является кинематической. Фазовые ограничения соответствуют препятствиям на плоскости, заданным в виде непересекающихся кругов, которые требуется избегать при движении. Независимыми управляющими воздействиями являются скорости колес, которые ограничены по абсолютной величине. Такая постановка часто применяется в тех случаях, когда динамические переходные процессы несущественны, например при управлении медленно движущимися гусеничными или колесными устройствами, в которых приоритет отдается мощности двигателей, а не их скорости. В статье показывается, что оптимальная траектория движения из начальной точки в конечную в выбранной кинематической постановке представляет собой последовательность отрезков общих касательных к парам кругов и дуг окружностей этих кругов. Геометрически кратчайший путь между начальной и конечной точками также состоит из отрезков касательных и дуг окружностей, поэтому оптимальное по быстродействию движение соответствует одному из локальных минимумов при поиске кратчайшего пути. Предложен аналитический метод поиска оптимальной траектории движения, основанный на построении графа возможных траекторий, где ребрами являются прямолинейные отрезки и дуги, а вершинами — точки их соединений, и поиска кратчайшего (быстрейшего) пути на графе с помощью метода Дейкстры. Представлено обоснование метода. Приведены результаты численных экспериментов по нахождению оптимальной траектории.

    Belotelov V.N., Daryina A.N.
    Tangent search method in time optimal problem for a wheeled mobile robot
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 401-421

    Searching optimal trajectory of motion is a complex problem that is investigated in many research studies. Most of the studies investigate methods that are applicable to such a problem in general, regardless of the model of the object. With such general approach, only numerical solution can be found. However, in some cases it is possible to find an optimal trajectory in a closed form. Current article considers a time optimal problem with state limitations for a wheeled mobile differential robot that moves on a horizontal plane. The mathematical model of motion is kinematic. The state constraints correspond to the obstacles on the plane defined as circles that need to be avoided during motion. The independent control inputs are the wheel speeds that are limited in absolute value. Such model is commonly used in problems where the transients are considered insignificant, for example, when controlling tracked or wheeled devices that move slowly, prioritizing traction power over speed. In the article it is shown that the optimal trajectory from the starting point to the finishing point in such kinematic approach is a sequence of straight segments of tangents to the obstacles and arcs of the circles that limit the obstacles. The geometrically shortest path between the start and the finish is also a sequence of straight lines and arcs, therefore the time-optimal trajectory corresponds to one of the local minima when searching for the shortest path. The article proposes a method of search for the time-optimal trajectory based on building a graph of possible trajectories, where the edges are the possible segments of the tajectory, and the vertices are the connections between them. The optimal path is sought using Dijkstra’s algorithm. The theoretical foundation of the method is given, and the results of computer investigation of the algorithm are provided.

  4. Максимова О.В., Григорьев В.И.
    Четырехфакторный вычислительный эксперимент для задачи случайного блуждания на двумерной решетке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 905-918

    Случайный поиск в настоящее время стал распространенным и эффективным средством решения сложных задач оптимизации и адаптации. В работе рассматривается задача о средней длительности случайного поиска одним объектом другого в зависимости от различных факторов на квадратной решетке. Решение поставленной задачи было реализовано при помощи проведения полного эксперимента с 4 факторами и ортогональным планом в 54 строки. В рамках каждой строки моделировались случайные блуждания двух точек с заданными начальными условиями и правила перехода, затем замерялась продолжительность поиска одного объекта другим. В результате построена регрессионная модель, отражающая среднюю длительность случайного поиска объекта в зависимости от четырех рассматриваемых факторов, задающих начальные положения двух объектов, условия их передвижения и обнаружения. Среди рассмотренных факторов, влияющих на среднее время поиска, определены наиболее значимые. По построенной модели проведена интерпретация в задаче случайного поиска объекта. Важным результатом работы стало то, что с помощью модели выявлено качественное и количественное влияние первоначальных позиций объектов, размера решетки и правил перемещения на среднее время продолжительности поиска. Показано, что начальное соседство объектов на решетке не гарантирует быстрый поиск, если каждый из них передвигается. Помимо этого, количественно оценено, во сколько раз может затянуться или сократиться среднее время поиска объекта при увеличении скорости ищущего объекта на 1 ед., а также при увеличении размера поля на 1 ед., при различных начальных положениях двух объектов. Выявлен экспоненциальный характер роста числа шагов поиска объекта при увеличении размера решетки при остальных фиксированных факторах. Найдены условия наиболее большого увеличения средней продолжительности поиска: максимальная удаленность объектов в сочетании с неподвижностью одного из них при изменении размеров поля на 1 ед. (т. е., к примеру, с $4 \times 4$ на $5 \times 5$) может увеличить в среднем продолжительность поиска в $e^{1.69} \approx 5.42$. Поставленная в работе задача может быть актуальна с точки зрения применения как в погранометрике для обеспечения безопасности государства, так и, к примеру, в теории массового обслуживания.

    Maksimova O.V., Grigoryev V.I.
    Four-factor computing experiment for the random walk on a two-dimensional square field
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 905-918

    Nowadays the random search became a widespread and effective tool for solving different complex optimization and adaptation problems. In this work, the problem of an average duration of a random search for one object by another is regarded, depending on various factors on a square field. The problem solution was carried out by holding total experiment with 4 factors and orthogonal plan with 54 lines. Within each line, the initial conditions and the cellular automaton transition rules were simulated and the duration of the search for one object by another was measured. As a result, the regression model of average duration of a random search for an object depending on the four factors considered, specifying the initial positions of two objects, the conditions of their movement and detection is constructed. The most significant factors among the factors considered in the work that determine the average search time are determined. An interpretation is carried out in the problem of random search for an object from the constructed model. The important result of the work is that the qualitative and quantitative influence of initial positions of objects, the size of the lattice and the transition rules on the average duration of search is revealed by means of model obtained. It is shown that the initial neighborhood of objects on the lattice does not guarantee a quick search, if each of them moves. In addition, it is quantitatively estimated how many times the average time of searching for an object can increase or decrease with increasing the speed of the searching object by 1 unit, and also with increasing the field size by 1 unit, with different initial positions of the two objects. The exponential nature of the growth in the number of steps for searching for an object with an increase in the lattice size for other fixed factors is revealed. The conditions for the greatest increase in the average search duration are found: the maximum distance of objects in combination with the immobility of one of them when the field size is changed by 1 unit. (that is, for example, with $4 \times 4$ at $5 \times 5$) can increase the average search duration in $e^{1.69} \approx 5.42$. The task presented in the work may be relevant from the point of view of application both in the landmark for ensuring the security of the state, and, for example, in the theory of mass service.

    Просмотров за год: 21.
  5. Иванова А.С., Омельченко С.С., Котлярова Е.В., Матюхин В.В.
    Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978

    В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.

    Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.

    Ivanova A.S., Omelchenko S.S., Kotliarova E.V., Matyukhin V.V.
    Calibration of model parameters for calculating correspondence matrix for Moscow
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 961-978

    In this paper, we consider the problem of restoring the correspondence matrix based on the observations of real correspondences in Moscow. Following the conventional approach [Gasnikov et al., 2013], the transport network is considered as a directed graph whose edges correspond to road sections and the graph vertices correspond to areas that the traffic participants leave or enter. The number of city residents is considered constant. The problem of restoring the correspondence matrix is to calculate all the correspondence from the $i$ area to the $j$ area.

    To restore the matrix, we propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. In our work, which is based on the work [Wilson, 1978], we describe the evolutionary justification of the entropy model and the main idea of the transition to solving the problem of entropy-linear programming (ELP) in calculating the correspondence matrix. To solve the ELP problem, it is proposed to pass to the dual problem. In this paper, we describe several numerical optimization methods for solving this problem: the Sinkhorn method and the Accelerated Sinkhorn method. We provide numerical experiments for the following variants of cost functions: a linear cost function and a superposition of the power and logarithmic cost functions. In these functions, the cost is a combination of average time and distance between areas, which depends on the parameters. The correspondence matrix is calculated for multiple sets of parameters and then we calculate the quality of the restored matrix relative to the known correspondence matrix.

    We assume that the noise in the restored correspondence matrix is Gaussian, as a result, we use the standard deviation as a quality metric. The article provides an overview of gradient-free optimization methods for solving non-convex problems. Since the number of parameters of the cost function is small, we use the grid search method to find the optimal parameters of the cost function. Thus, the correspondence matrix calculated for each set of parameters and then the quality of the restored matrix is evaluated relative to the known correspondence matrix. Further, according to the minimum residual value for each cost function, we determine for which cost function and at what parameter values the restored matrix best describes real correspondence.

  6. Федина А.А., Нургалиев А.И., Скворцова Д.А.
    Сравнение результатов применения различных эволюционных алгоритмов для решения задачи оптимизации маршрута беспилотных аппаратов
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 45-62

    В данной работе проводится сравнительный анализ точного и эвристических алгоритмов, представленных методом ветвей и границ, генетическим и муравьиным алгоритмами соответственно, для поиска оптимального решения задачи коммивояжера на примере робота-курьера. Целью работы является определение времени работы, длины полученного маршрута и объема памяти, необходимого для работы программы, при использовании метода ветвей и границ и эволюционных эвристических алгоритмов. Также определяется наиболее целесообразный из перечисленных методов для применения в заданных условиях. В настоящей статье используются материалы проведенного исследования, реализованного в формате программы для ЭВМ, программный код для которой реализован на языке Python. В ходе исследования был выбран ряд критериев применимости алгоритмов (время работы программы, длина построенного маршрута и объем необходимой для работы программы памяти), получены результаты работы алгоритмов в заданных условиях и сделаны выводы о степени целесообразности применения того или иного алгоритма в различных заданных условиях работы робота-курьера. В ходе исследования выяснилось, что для малого количества точек ($\leqslant10$) метод ветвей и границ является наиболее предпочтительным, так как находит оптимальное решение быстрее. Однако при вычислении маршрута этим методом, при условии увеличения точек более 10, время работы растет экспоненциально. В таком случае более эффективные результаты дает эвристический подход с использованием генетического и муравьиного алгоритмов. При этом муравьиный алгоритм отличается решениями, наиболее близкими к эталонным, при увеличении точек более 16. Относительным недостатком его является наибольшая ресурсоемкость среди рассматриваемых алгоритмов. Генетический алгоритм дает схожие результаты, но при увеличении точек более 16 растет длина найденного маршрута относительно эталонного. Преимущество генетического алгоритма — его меньшая ресурсоемкость по сравнению с другими алгоритмами.

    Практическая значимость данной статьи заключается в потенциальной возможности использования полученных результатов для оптимального решения логистических задач автоматизированной системой в различных сферах: складская логистика, транспортная логистика, логистика «последней мили» и т. д.

    Fedina A.A., Nurgaliev A.I., Skvortsova D.A.
    Comparison of the results of using various evolution algorithms to solve the problem of route optimization of unmanned vehicles
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 45-62

    In this paper, a comparative analysis of the exact and heuristic algorithms presented by the method of branches and boundaries, genetic and ant algorithms, respectively, is carried out to find the optimal solution to the traveling salesman problem using the example of a courier robot. The purpose of the work is to determine the running time, the length of the obtained route and the amount of memory required for the program to work, using the method of branches and boundaries and evolutionary heuristic algorithms. Also, the most appropriate of the listed methods for use in the specified conditions is determined. This article uses the materials of the conducted research, implemented in the format of a computer program, the program code for which is implemented in Python. In the course of the study, a number of criteria for the applicability of algorithms were selected (the time of the program, the length of the constructed route and the amount of memory necessary for the program to work), the results of the algorithms were obtained under specified conditions and conclusions were drawn about the degree of expediency of using one or another algorithm in various specified conditions of the courier robot. During the study, it turned out that for a small number of points  $\leqslant10$, the method of branches and boundaries is the most preferable, since it finds the optimal solution faster. However, when calculating the route by this method, provided that the points increase by more than 10, the operating time increases exponentially. In this case, more effective results are obtained by a heuristic approach using a genetic and ant algorithm. At the same time, the ant algorithm is distinguished by solutions that are closest to the reference ones and with an increase of more than 16 points. Its relative disadvantage is the greatest resource intensity among the considered algorithms. The genetic algorithm gives similar results, but after increasing the points more than 16, the length of the found route increases relative to the reference one. The advantage of the genetic algorithm is its lower resource intensity compared to other algorithms.

    The practical significance of this article lies in the potential possibility of using the results obtained for the optimal solution of logistics problems by an automated system in various fields: warehouse logistics, transport logistics, «last mile» logistics, etc.

  7. Нефедова О.А., Спевак Л.Ф., Казаков А.Л., Ли М.Г.
    Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467

    В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.

    Nefedova O.A., Spevak L.P., Kazakov A.L., Lee M.G.
    Solution to a two-dimensional nonlinear heat equation using null field method
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467

    The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.

  8. Павлов П.А.
    Математические модели и методы организации вычислений в мультипроцессорных системах
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 423-436

    В работе предложена и исследована математическая модель распределенной вычислительной системы параллельных взаимодействующих процессов, конкурирующих за использование ограниченного числа копий структурированного программного ресурса. В случаях неограниченного и ограниченного параллелизма по числу процессоров мультипроцессорной системы решены задачи определения оперативных и точных значений времени выполнения неоднородных и одинаково распределенных конкурирующих процессов в синхронном режиме, при котором обеспечивается линейный порядок выполнения блоков структурированного программного ресурса внутри каждого из процессов без задержек. Полученные результаты можно использовать при сравнительном анализе математических соотношений для вычисления времени реализации множества параллельных распределенных взаимодействующих конкурирующих процессов, математическом исследовании эффективности и оптимальности организации распределенных вычислений, решении задач построения оптимальной компоновки блоков одинаково распределенной системы, нахождения оптимального числа процессоров, обеспечивающих директивное время выполнения заданных объемов вычислений. Предложенные модели и методы открывают новые перспективы при решении проблем оптимального распределения ограниченных вычислительных ресурсов, синхронизации множества взаимодействующих конкурирующих процессов, минимизации системных затрат при выполнении параллельных распределенных процессов.

    Pavlov P.A.
    Mathematical models and methods for organizing calculations in SMP systems
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 423-436

    The paper proposes and investigates a mathematical model of a distributed computing system of parallel interacting processes competing for the use of a limited number of copies of a structured software resource. In cases of unlimited and limited parallelism by the number of processors of a multiprocessor system, the problems of determining operational and exact values of the execution time of heterogeneous and identically distributed competing processes in a synchronous mode are solved, which ensures a linear order of execution of blocks of a structured software resource within each of the processes without delays. The obtained results can be used in a comparative analysis of mathematical relationships for calculating the implementation time of a set of parallel distributed interacting competing processes, a mathematical study of the efficiency and optimality of the organization of distributed computing, solving problems of constructing an optimal layout of blocks of an identically distributed system, finding the optimal number of processors that provide the directive execution time of given volumes of computations. The proposed models and methods open up new prospects for solving problems of optimal distribution of limited computing resources, synchronization of a set of interacting competing processes, minimization of system costs when executing parallel distributed processes.

  9. Лоенко Д.С., Шеремет М.А.
    Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72

    В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.

    В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.

    Loenko D.S., Sheremet M.A.
    Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72

    In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.

    As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.

  10. Кротов К.В., Скатков А.В.
    Оптимизация планирования выполнения пакетов заданий в многостадийных системах при ограничениях и формировании комплектов
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 917-946

    Современные методы комплексного планирования выполнения пакетов заданий в многостадийных системах характеризуются наличием ограничений на размерность решаемой задачи, невозможностью гарантированного получения эффективных решений при различных значениях ее входных параметров, а также невозможностью учета условия формирования комплектов из результатов и ограничения на длительности интервалов времени функционирования системы. Для решения задачи планирования выполнения пакетов заданий при формировании комплектов результатов и ограничении на длительности интервалов времени функционирования системы реализована декомпозиция обобщенной функции системы на совокупность иерархически взаимосвязанных подфункций. Применение декомпозиции позволило использовать иерархический подход для планирования выполнения пакетов заданий в многостадийных системах, предусматривающий определение решений по составам пакетов заданий на первом уровне иерархии, решений по составам групп пакетов заданий, выполняемых в течение временных интервалов ограниченной длительности, на втором уровне и расписаний выполнения пакетов на третьем уровне иерархии. С целью оценки оптимальности решений по составам пакетов результаты их выполнения, полученные в течение заданных временных интервалов, распределяются по комплектам. Для определения комплексных решений применен аппарат теории иерархических игр. Построена модель иерархической игры для принятия решений по составам пакетов, групп пакетов и расписаниям выполнения пакетов, представляющая собой систему иерархически взаимосвязанных критериев оптимизации решений. В модели учтены условие формирования комплектов из результатов выполнения пакетов заданий и ограничение на длительность интервалов времени ее функционирования. Задача определения составов пакетов заданий и групп пакетов заданий является NP-трудной, поэтому для ее решения требуется применение приближенных методов оптимизации. С целью оптимизации групп пакетов заданий реализовано построение метода формирования начальных решений по их составам, которые в дальнейшем оптимизируются. Также сформулирован алгоритм распределения по комплектам результатов выполнения пакетов заданий, полученных в течение временных интервалов ограниченной длительности. Предложен метод локальной оптимизации решений по составам групп пакетов, в соответствии с которым из групп исключаются пакеты, результаты выполнения которых не входят в комплекты, и добавляются пакеты, не включенные ни в одну из групп. Выполнена программная реализация рассмотренного метода комплексной оптимизации составов пакетов заданий, групп пакетов заданий и расписаний выполнения пакетов заданий из групп (в том числе реализация метода оптимизации составов групп пакетов заданий). С ее использованием проведены исследования особенностей рассматриваемой задачи планирования. Сформулированы выводы, касающиеся зависимости эффективности планирования выполнения пакетов заданий в многостадийных системах при введенных условиях от входных параметров задачи. Использование метода локальной оптимизации составов групп пакетов заданий позволяет в среднем на 60% увеличить количество формируемых комплектов из результатов выполнения заданий в пакетах из групп по сравнению с фиксированными группами (не предполагающими оптимизацию).

    Krotov K.V., Skatkov A.V.
    Optimization of task package execution planning in multi-stage systems under restrictions and the formation of sets
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 917-946

    Modern methods of complex planning the execution of task packages in multistage systems are characterized by the presence of restrictions on the dimension of the problem being solved, the impossibility of guaranteed obtaining effective solutions for various values of its input parameters, as well as the impossibility of registration the conditions for the formation of sets from the result and the restriction on the interval duration of time of the system operating. The decomposition of the generalized function of the system into a set of hierarchically interconnected subfunctions is implemented to solve the problem of scheduling the execution of task packages with generating sets of results and the restriction on the interval duration of time for the functioning of the system. The use of decomposition made it possible to employ the hierarchical approach for planning the execution of task packages in multistage systems, which provides the determination of decisions by the composition of task groups at the first level of the hierarchy decisions by the composition of task packages groups executed during time intervals of limited duration at the second level and schedules for executing packages at the third level the hierarchy. In order to evaluate decisions on the composition of packages, the results of their execution, obtained during the specified time intervals, are distributed among the packages. The apparatus of the theory of hierarchical games is used to determine complex solutions. A model of a hierarchical game for making decisions by the compositions of packages, groups of packages and schedules of executing packages is built, which is a system of hierarchically interconnected criteria for optimizing decisions. The model registers the condition for the formation of sets from the results of the execution of task packages and restriction on duration of time intervals of its operating. The problem of determining the compositions of task packages and groups of task packages is NP-hard; therefore, its solution requires the use of approximate optimization methods. In order to optimize groups of task packages, the construction of a method for formulating initial solutions by their compositions has been implemented, which are further optimized. Moreover, a algorithm for distributing the results of executing task packages obtained during time intervals of limited duration by sets is formulated. The method of local solutions optimization by composition of packages groups, in accordance with which packages are excluded from groups, the results of which are not included in sets, and packages, that aren’t included in any group, is proposed. The software implementation of the considered method of complex optimization of the compositions of task packages, groups of task packages, and schedules for executing task packages from groups (including the implementation of the method for optimizing the compositions of groups of task packages) has been performed. With its use, studies of the features of the considered planning task are carried out. Conclusion are formulated concerning the dependence of the efficiency of scheduling the execution of task packages in multistage system under the introduced conditions from the input parameters of the problem. The use of the method of local optimization of the compositions of groups of task packages allows to increase the number of formed sets from the results of task execution in packages from groups by 60% in comparison with fixed groups (which do not imply optimization).

Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.