Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Особенности движения кинков ДНК при асинхронном включении/выключении постоянного и периодического полей
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 545-558Исследование влияния внешних полей на живые системы — одно их наиболее интересных и быстро развивающихся направлений современной биофизики. Однако механизмы такого воздействия до сих пор не совсем ясны. Один из подходов к изучению этого вопроса связывают с моделированием взаимодействия внешних полей с внутренней подвижностью биологических объектов. В настоящей работе этот подход применяется для исследования влияния внешних полей на движение локальных конформационных возмущений — кинков в молекуле ДНК. Понимая и учитывая, что в целом такая задача тесно связана с задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем, мы поставили задачу — исследовать физические механизмы, регулирующие движение кинков, а также ответить на вопрос, могут ли постоянные и периодические поля выступать в роли регуляторов этого движения. В работе рассматривается самый общий случай, когда постоянные и периодические поля включаются и выключаются асинхронно. Детально исследованы три варианта асинхронного включения/выключения. В первом варианте интервалы (или диапазоны) действия постоянного и периодического полей не перекрываются, во втором — перекрываются, а третьем — интервалы вложены друг в друга. Расчеты выполнялись для последовательности плазмиды pTTQ18. Движение кинков моделировалось уравнением МакЛафлина–Скотта, а коэффициенты этого уравнения рассчитывались в квазиоднородном приближении. Численные эксперименты показали, что постоянные и периодические поля оказывают существенное влияние на характер движения кинка и регулируют его. Так, включение постоянного поля приводит к быстрому увеличению скорости кинка и установлению стационарной скорости движения, а включение периодического поля приводит к установившимся колебаниям кинка с частотой внешнего периодического поля. Показано, что поведение кинка зависит от взаимного расположения диапазонов действия внешних полей. Причем, как оказалось, события, происходящие в одном диапазоне, могут оказывать влияние на события в другом временном диапазоне даже в том случае, когда диапазоны расположены достаточно далеко друг от друга. Показано, что перекрывание диапазонов действия постоянного и периодического полей приводит к значительному увеличению пути, проходимому кинком до полной остановки. Максимальный рост пути наблюдается в случае вложенных друг в друга диапазонов. В заключении обсуждается вопрос о том, как полученные модельные результаты могут быть связаны с важнейшей задачей биологии — задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем.
Ключевые слова: уравнение МакЛафлина–Скотта, кинки ДНК, действие внешних полей, асинхронное включение/выключение.
Features of the DNA kink motion in the asynchronous switching on and off of the constant and periodic fields
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 545-558Просмотров за год: 29. Цитирований: 1 (РИНЦ).Investigation of the influence of external fields on living systems is one of the most interesting and rapidly developing areas of modern biophysics. However, the mechanisms of such an impact are still not entirely clear. One approach to the study of this issue is associated with modeling the interaction of external fields with internal mobility of biological objects. In this paper, this approach is used to study the effect of external fields on the motion of local conformational distortions — kinks, in the DNA molecule. Realizing and taking into account that on the whole this task is closely connected with the problem of the mechanisms of regulation of vital processes of cells and cellular systems, we set the problem — to investigate the physical mechanisms regulating the motion of kinks and also to answer the question whether permanent and periodic fields can play the role of regulators of this movement. The paper considers the most general case, when constant and periodic fields are switching on and off asynchronously. Three variants of asynchronous switching on/off are studied in detail. In the first variant, the time intervals (or diapasons) of the actions of the constant and periodic fields do not overlap, in the second — overlap, and in the third — the intervals are putting in each other. The calculations were performed for the sequence of plasmid pTTQ18. The kink motion was modeled by the McLaughlin–Scott equation, and the coefficients of the equation were calculated in a quasi-homogeneous approximation. Numerical experiments showed that constant and periodic fields exert a significant influence on the character of the kink motion and regulate it. So the switching on of a constant field leads to a rapid increase of the kink velocity and to the establishment of a stationary velocity of motion, and the switching on of a periodic field leads to the steady oscillations of the kink with the frequency of the external periodic field. It is shown that the behavior of the kink depends on the mutual arrangement of the diapasons of the action of the external fields. As it turned out, events occurring in one of the two diapasons can affect the events in the other diapason, even when the diapasons are sufficiently far apart. It is shown that the overlapping of the diapasons of action of the constant and periodic fields leads to a significant increase in the path traversed by the kink to a complete stop. Maximal growth of the path is observed when one diapason is putting in each other. In conclusion, the question of how the obtained model results could be related to the most important task of biology — the problem of the mechanisms of regulation of the processes of vital activity of cells and cellular systems is discussed.
-
Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.
Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.
-
Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.
A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.
-
Modeling the indirect impact of rhinoceros beetle control on red palm weevils in coconut plantations
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 737-752In this paper, a mathematical model is developed and analyzed to assess the indirect impact of controlling rhinoceros beetles on red palm weevil populations in coconut plantations. The model consists of a system of six non-linear ordinary differential equations (ODEs), capturing the interactions among healthy and infected coconut trees, rhinoceros beetles, red palm weevils, and the oryctes virus. The model ensures biological feasibility through positivity and boundedness analysis. The basic reproduction number $R_0$ is derived using the next-generation matrix method. Both local and global stability of the equilibrium points are analyzed to determine conditions for pest persistence or eradication. Sensitivity analysis identifies the most influential parameters for pest management. Numerical simulations reveal that by effectively controlling the rhinoceros beetle population particularly through infection with the oryctes virus, the spread of the red palm weevil can also be suppressed. This indirect control mechanism helps to protect the coconut tree population more efficiently and supports sustainable pest management in coconut plantations.
Ключевые слова: mathematical modeling, coconut plantation dynamics, non-linear ordinary differential equations, pest control model, numerical simulation.
Modeling the indirect impact of rhinoceros beetle control on red palm weevils in coconut plantations
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 737-752In this paper, a mathematical model is developed and analyzed to assess the indirect impact of controlling rhinoceros beetles on red palm weevil populations in coconut plantations. The model consists of a system of six non-linear ordinary differential equations (ODEs), capturing the interactions among healthy and infected coconut trees, rhinoceros beetles, red palm weevils, and the oryctes virus. The model ensures biological feasibility through positivity and boundedness analysis. The basic reproduction number $R_0$ is derived using the next-generation matrix method. Both local and global stability of the equilibrium points are analyzed to determine conditions for pest persistence or eradication. Sensitivity analysis identifies the most influential parameters for pest management. Numerical simulations reveal that by effectively controlling the rhinoceros beetle population particularly through infection with the oryctes virus, the spread of the red palm weevil can also be suppressed. This indirect control mechanism helps to protect the coconut tree population more efficiently and supports sustainable pest management in coconut plantations.
-
Разработка гибридной имитационной модели сборочного цеха
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1359-1379В представленной работе разработана гибридная имитационная модель сборочного цеха в среде AnyLogic, которая позволяет подбирать оптимальные параметры производственной системы. Для построения гибридной модели использовались подходы, объединяющие дискретно-событийное моделирование и агентное в единую модель с интегрирующим взаимодействием. В рамках данной работы описан механизм функционирования сложной производственной системы, состоящей из нескольких участников-агентов. Каждому агенту соответствует класс, в котором задается определенный набор параметров агента. В имитационной модели были учтены три основные группы операции, выполняющиеся последовательно, определена логика работы с забракованными комплектами. Процесс сборки изделия представляет собой процесс, протекающий в многофазной разомкнутой системе массового обслуживания с ожиданием. Также есть признаки замкнутой системы — потоки брака для повторной обработки. При создании распределительной системы в сегменте окончательного контроля используются законы выполнения заявок в очереди типа FIFO. Для функциональной оценки производственной системы в имитационной модели включены несколько функциональных переменных, описывающих количество готовых изделий, среднее время подготовки изделий, количество и доля брака, результат моделирования для проведения исследований, а также функциональные переменные, в которых будут отображаться расчетные коэффициенты использования. Были проведены серии экспериментов по моделированию с целью изучения влияния поведения агентов системы на общие показатели эффективности производственной системы. В ходе эксперимента было установлено, что на показатель среднего времени подготовки изделия основное влияние оказывают такие параметры, как средняя скорость подачи комплекта заготовки, среднее время выполнения операций. На заданном промежутке ограничений удалось подобрать оптимальный набор параметров, при котором удалось достичь наиболее эффективной работы сборочной линии. Данный эксперимент подтверждает основной принцип агентного моделирования: децентрализованные агенты вносят личный вклад и оказывают влияние на работу всей моделируемой системы в целом. Вре зультате проведенных экспериментов, благодаря подбору оптимального набора параметров, удалось улучшить основные показатели функционирования сборочного цеха, а именно: увеличить показатель производительности на 60%; снизить показатель средней продолжительности сборки изделия на 38%.
Ключевые слова: гибридная имитационная модель, методы имитационного моделирования, дискретно-событийное моделирование, агентное моделирование, параметры производственной системы, системы массового обслуживания.
Development of a hybrid simulation model of the assembly shop
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1359-1379In the presented work, a hybrid optimal simulation model of an assembly shop in the AnyLogic environment has been developed, which allows you to select the parameters of production systems. To build a hybrid model of the investigative approach, discrete-event modeling and aggressive modeling are combined into a single model with an integrating interaction. Within the framework of this work, a mechanism for the development of a production system consisting of several participants-agents is described. An obvious agent corresponds to a class in which a set of agent parameters is specified. In the simulation model, three main groups of operations performed sequentially were taken into account, and the logic for working with rejected sets was determined. The product assembly process is a process that occurs in a multi-phase open-loop system of redundant service with waiting. There are also signs of a closed system — scrap flows for reprocessing. When creating a distribution system in the segment, it is mandatory to use control over the execution of requests in a FIFO queue. For the functional assessment of the production system, the simulation model includes several functional functions that describe the number of finished products, the average time of preparation of products, the number and percentage of rejects, the simulation result for the study, as well as functional variables in which the calculated utilization factors will be used. A series of modeling experiments were carried out in order to study the behavior of the agents of the system in terms of the overall performance indicators of the production system. During the experiment, it was found that the indicator of the average preparation time of the product is greatly influenced by such parameters as: the average speed of the set of products, the average time to complete operations. At a given limitation interval, we managed to select a set of parameters that managed to achieve the largest possible operation of the assembly line. This experiment implements the basic principle of agent-based modeling — decentralized agents make a personal contribution and affect the operation of the entire simulated system as a whole. As a result of the experiments, thanks to the selection of a large set of parameters, it was possible to achieve high performance indicators of the assembly shop, namely: to increase the productivity indicator by 60%; reduce the average assembly time of products by 38%.
-
Влияние направленных перемещений хищника на формирование пространственных структур в модели трехвидового сообщества с учетом всеядности хищника
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1617-1634Рассматривается модель, описывающая пространственно-временную динамику сообщества, состоящего из трех популяций, представляющих звенья трофической цепи. Локальные взаимодействия популяций строятся по типу «хищник – жертва», причем хищник потребляет не только жертву, но и ресурс, составляющий рацион жертвы. В предыдущей работе автором был проведен анализ модели без учета пространственной неоднородности. Данное исследование продолжает модельное изучение сообщества, учитывая диффузию особей, а также направленные перемещения хищника. Предполагается, что хищник реагирует на пространственное изменение ресурса и жертвы, занимая области с более высокой плотностью или избегая их. В модели такое поведение описывается адвективным членом со скоростью, пропорциональной градиенту плотности ресурса и жертвы. Система рассматривается в одномерной области в предположении нулевых потоков через границу. Динамика модели определяется устойчивостью системы в окрестности пространственно-однородного равновесия к малым пространственно-неоднородным возмущениям. В работе проведен анализ возможности возникновения в системе волновой неустойчивости, приводящей к возникновению автоволн и неустойчивости Тьюринга, в результате которой образуются стационарные структуры. Получены достаточные условия существования обоих видов неустойчивости, определяющие границы области значений коэффициентов таксиса, при которых система может потерять устойчивость. Анализ влияния параметров локальной кинетики модели на возможность образования пространственных структур показал, что при положительном таксисе на ресурс возможна лишь неустойчивость Тьюринга, а при отрицательном — оба вида неустойчивости. Для поиска численного решения системы использован метод линий с расщеплением разностного оператора по физическим процессам. Пространственно-временная динамика системы представлена в нескольких вариантах, реализующих один из типов неустойчивости. В случае положительного таксиса на жертву в областях меньшего размера возможно как реализация автоволнового режима, так и образование стационарных структур; с увеличением области тьюринговы структуры не образуются. Если же таксис на жертву отрицательный, то стационарные структуры возникают в областях любого размера, периодические структуры появляются только в более крупных областях.
Ключевые слова: модель трехвидового сообщества, неустойчивость, вызванная трофотаксисом, пространственные структуры.
Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.
-
A survey on the application of large language models in software engineering
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1715-1726Large Language Models (LLMs) are transforming software engineering by bridging the gap between natural language and programming languages. These models have revolutionized communication within development teams and the Software Development Life Cycle (SDLC) by enabling developers to interact with code using natural language, thereby improving workflow efficiency. This survey examines the impact of LLMs across various stages of the SDLC, including requirement gathering, system design, coding, debugging, testing, and documentation. LLMs have proven to be particularly useful in automating repetitive tasks such as code generation, refactoring, and bug detection, thus reducing manual effort and accelerating the development process. The integration of LLMs into the development process offers several advantages, including the automation of error correction, enhanced collaboration, and the ability to generate high-quality, functional code based on natural language input. Additionally, LLMs assist developers in understanding and implementing complex software requirements and design patterns. This paper also discusses the evolution of LLMs from simple code completion tools to sophisticated models capable of performing high-level software engineering tasks. However, despite their benefits, there are challenges associated with LLM adoption, such as issues related to model accuracy, interpretability, and potential biases. These limitations must be addressed to ensure the reliable deployment of LLMs in production environments. The paper concludes by identifying key areas for future research, including improving the adaptability of LLMs to specific software domains, enhancing their contextual understanding, and refining their capabilities to generate semantically accurate and efficient code. This survey provides valuable insights into the evolving role of LLMs in software engineering, offering a foundation for further exploration and practical implementation.
A survey on the application of large language models in software engineering
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1715-1726Large Language Models (LLMs) are transforming software engineering by bridging the gap between natural language and programming languages. These models have revolutionized communication within development teams and the Software Development Life Cycle (SDLC) by enabling developers to interact with code using natural language, thereby improving workflow efficiency. This survey examines the impact of LLMs across various stages of the SDLC, including requirement gathering, system design, coding, debugging, testing, and documentation. LLMs have proven to be particularly useful in automating repetitive tasks such as code generation, refactoring, and bug detection, thus reducing manual effort and accelerating the development process. The integration of LLMs into the development process offers several advantages, including the automation of error correction, enhanced collaboration, and the ability to generate high-quality, functional code based on natural language input. Additionally, LLMs assist developers in understanding and implementing complex software requirements and design patterns. This paper also discusses the evolution of LLMs from simple code completion tools to sophisticated models capable of performing high-level software engineering tasks. However, despite their benefits, there are challenges associated with LLM adoption, such as issues related to model accuracy, interpretability, and potential biases. These limitations must be addressed to ensure the reliable deployment of LLMs in production environments. The paper concludes by identifying key areas for future research, including improving the adaptability of LLMs to specific software domains, enhancing their contextual understanding, and refining their capabilities to generate semantically accurate and efficient code. This survey provides valuable insights into the evolving role of LLMs in software engineering, offering a foundation for further exploration and practical implementation.
-
Моральный выбор: математическая модель
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1323-1335В работе приведены результаты исследований по созданию математической модели морального выбора, основанной на развитии подхода, предложенного В.А. Лефевром. В отличие от В.А. Лефевра, который рассматривал весьма умозрительную ситуацию морального выбора субъекта между абстрактными добром и злом под давлением на него внешнего мира с учетом субъективного восприятия субъектом этого давления, в нашем исследовании рассмотрена более приземленная и практически значимая ситуация. Рассматривается случай, когда субъект при принятии решений ориентируется на свое индивидуальное восприятие внешнего мира (которое может быть искаженным, например, вследствие внешнего целенаправленного информационного воздействия на субъекта и манипулирования его сознанием), а добро и зло не абстрактны, а обусловлены системой ценностей, принятой в конкретном рассматриваемом обществе и привязанной к конкретной идеологии/религии, которые могут быть различными для разных обществ.
В результате проведенных исследований разработана базовая математическая модель, рассмотрены частные случаи ее применения. Выявлены некоторые закономерности, связанные с моральным выбором, приведено их формальное описание. В частности, на языке модели рассмотрена ситуация манипулирования сознанием, сформулирован закон снижения моральности общества, состоящего из так называемых свободных субъектов (то есть таких, которые стремятся действовать в соответствии со своими интенциями и соответствовать в своих действиях образу своего «я»).
Ключевые слова: моральный выбор, математическая модель, интенция, функция готовности, система ценностей, свободный субъект.
Features of social interactions: the basic model
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1323-1335The paper presents the results of research on the creation of a mathematical model of moral choice based on the development of the approach proposed by V. A. Lefebvre. Unlike V. A. Lefebvre, who considered a very speculative situation of a subject’s moral choice between abstract “good” and “evil” under pressure from the outside world, taking into account the subjective perception of this pressure by the subject, our study considers a more mundane and practically significant situation. The case is considered when the subject, when making decisions, is guided by his individual perception of the outside world (which may be distorted, for example, due to external purposeful informational influence on the subject and manipulation of his consciousness), and “good” and “evil” are not abstract, but are conditioned by a value system adopted in a particular society under consideration and tied to a specific ideology/religion, which may be different for different societies.
As a result of the conducted research, a basic mathematical model has been developed, and special cases of its application have been considered. Some patterns related to moral choice are revealed, and their formal description is given. In particular, the situation of manipulation of consciousness is considered in the language of the model, the law of reducing the “morality” of a society consisting of so-called free subjects (that is, those who strive to act in accordance with their intentions and correspond in their actions to the image of their “I”) is formulated.
Keywords: moral choice, mathematical model, intention, readiness function, value system, free subject. -
Особенности социальных взаимодействий: базовая модель
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1673-1693В работе рассматриваются базовая модель конкурентных взаимодействий и ее использование для анализа и описания социальных процессов. Особенностью модели является то, что она описывает взаимодействие нескольких конкурирующих акторов, при этом акторы могут варьировать стратегию своих действий, в частности, образовывать коалиции для совместного противодействия общему противнику.
В результате моделирования выявлены различные режимы конкурентного взаимодействия, проведена их классификация, описаны их особенности. В ходе исследования уделено внимание так называемым негрубым (по А.А. Андронову) случаям реализации конкурентного взаимодействия, которые до сих пор редко рассматривались в научной литературе, но зато достаточно часто встречаются в реальной жизни. Сиспо льзованием базовой математической модели рассмотрены условия реализации различных режимов конкурентных взаимодействий, определены условия перехода от одних режимов к другим, приведены примеры реализации этих режимов в экономике, социальной и политической жизни.
Показано, что при относительно невысоком уровне конкуренции, носящей неантагонистический характер, конкуренция может приводить к повышению активности взаимодействующих акторов и к общему экономическому росту. Причем при наличии расширяющихся ресурсных возможностей (до тех пор, пока такие возможности сохраняются) данный рост может иметь гиперболический характер. При снижении ресурсных возможностей и усилении конкуренции происходит переход к колебательному режиму, когда более слабые акторы объединяются для совместного противодействия более сильным. При дальнейшем снижении ресурсных возможностей и усилении конкуренции происходит переход к формированию устойчивых иерархических структур. При этом модель показывает, что в определенный момент происходит потеря устойчивости, система становится негрубой (по А.А. Андронову) и чувствительной к флуктуациям изменений параметров. В результате сложившиеся иерархии могут разрушиться и замениться на новые. При дальнейшем повышении интенсивности конкуренции происходит полное подавление актором-лидером своих оппонентов и установление монополизма.
Приведены примеры из экономической, социальной, политической жизни, иллюстрирующие закономерности, выявленные на основе моделирования с использованием базовой модели конкуренции. Полученные результаты могут быть использованы при анализе, моделировании и прогнозировании социально-экономических и политических процессов.
Ключевые слова: конкуренция, математическое моделирование, игра с нулевой и положительной суммой, монополизм, иерархии, динамическое равновесие, устойчивые структуры.
Features of social interactions: the basic model
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1673-1693The paper considers the basic model of competitive interactions and its use for the analysis and description of social processes. The peculiarity of the model is that it describes the interaction of several competing actors, while actors can vary the strategy of their actions, in particular, form coalitions to jointly counter a common enemy. As a result of modeling, various modes of competitive interaction were identified, their classification was conducted, and their features were described. In the course of the study, the attention is paid to the so-called “rough” (according to A.A. Andronov) cases of the implementation of competitive interaction, which until now have rarely been considered in the scientific literature, but are quite common in real life. Using a basic mathematical model, the conditions for the implementation of various modes of competitive interactions are considered, the conditions for the transition from one mode to another are determined, examples of the implementation of these modes in the economy, social and political life are given. It is shown that with a relatively low level of competition, which is non-antagonistic in nature, competition can lead to an increase in the activity of interacting actors and to overall economic growth. Moreover, in the presence of expanding resource opportunities (as long as such opportunities remain), this growth may have a hyperbolic character. With a decrease in resource capabilities and increased competition, there is a transition to an oscillatory mode, when weaker actors unite to jointly counteract stronger ones. With a further decrease in resource opportunities and increased competition, there is a transition to the formation of stable hierarchical structures. At the same time, the model shows that at a certain moment there is a loss of stability, the system becomes “rough” according to A.A. Andronov and sensitive to fluctuations in parameter changes. As a result, the existing hierarchies may collapse and be replaced by new ones. With a further increase in the intensity of competition, the actor-leader completely suppresses his opponents and establishes monopolism. Examples from economic, social, and political life are given, illustrating the patterns identified on the basis of modeling using the basic model of competition. The obtained results can be used in the analysis, modeling and forecasting of socioeconomic and political processes.
-
Динамика планктонного сообщества с учетом трофических характеристик зоопланктона
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 525-554Предложена четырехкомпонентная модель планктонного сообщества с дискретным временем, учитывающая конкурентные взаимоотношения между разными группами фитопланктона и трофические характеристики зоопланктона: рассматривается деление зоопланктона на хищный и нехищный типы. Изъятие нехищного зоопланктона хищным явно представлено в модели. Нехищный зоопланктон питается фитопланктоном, включающим два конкурирующих компонента: токсичный и нетоксичный тип, при этом последний пригоден в пищу для зоопланктона. Модель двух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух типов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из компонентов-конкурентов доступностью внешних ресурсов. Изъятие жертв хищниками описывается трофической функцией Холлинга типа II с учетом насыщения хищника.
Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего существованию полного сообщества, может происходить как через каскад бифуркаций удвоения периода, так и бифуркацию Неймарка – Сакера, ведущую к возникновению квазипериодических колебаний. Предложенная в данной работе модель, являясь достаточно простой, демонстрирует динамику сообщества подобную той, что наблюдается в естественных системах и экспериментах: с отставанием колебаний хищника от жертвы примерно на четверть периода, длиннопериодические противофазные циклы хищника и жертвы, а также скрытые циклы, при которых плотность жертв остается практически постоянной, а плотность хищников флуктуирует, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие. При этом вариация внутрипопуляционных параметров фито- или зоопланктона может приводить к выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. Квазипериодическая динамика может возникать при достаточно небольшихск оростях роста фитопланктона, соответствующих стабильной или регулярной динамике сообщества. Смена динамического режима в этой области (переход от регулярной динамики к квазипериодической и наоборот) может происходить за счет вариации начальных условий или внешнего воздействия, изменяющего текущие численности компонентов и смещающего систему в бассейн притяжения другого динамического режима.
Ключевые слова: динамика сообщества, бифуркация, динамические режимы, мультистабильность, модель Рикера, конкуренция, взаимодействие «хищник – жертва», скрытые циклы.
Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.
The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"