Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.
Ключевые слова: наножидкость, концентрация SiO$_2$, кислотность рН, динамическая вязкость, регрессия, нейронные сети, машинное обучение.
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
-
Эффект возбуждения подкритических колебаний в стохастических системах с запаздыванием. Часть II. Управление равновесием жидкости
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 369-389В работе теоретически и экспериментально рассматривается задача об автоматическом поддержании механического равновесия неоднородно нагретой жидкости в термосифоне с помощью подсистемы, которая подавляет конвекцию посредством малых изменений ориентации системы в пространстве. Обнаружено, что чрезмерное усиление обратной связи возбуждает в системе колебания, причина которых кроется в запаздывании работы контроллера. При наличии шума колебания возникают даже тогда, когда детерминистское описание предсказывает стационарное поведение. Получено хорошее согласие между экспериментом и теорией.
Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part II. Control of fluid equilibrium
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 369-389Просмотров за год: 1. Цитирований: 6 (РИНЦ).The problem of active control of the mechanical equilibrium of an inhomogeneously heated fluid in a thermosyphon is studied theoretically and experimentally. The control is performed by using a feedback subsystem which inhibits convection by changing the orientation of thermosyphon in space. It is shown that excess feedback leads to the excitation of oscillations which are related to a delay in the controller work. In the presense of noise, the oscillations arise even when deterministic description predicts stationary behaviour. The experimental data and theory are in good agreement.
-
Моделирование температурного поля воздушных фурм доменных печей
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 117-125Проведено компьютерное моделирование динамики нагрева воздушной фурмы доменной печи с помощью вычислительной среды конечно-элементного анализа DEFORM-2D. Исследовано влияние теплоизолирующей вставки, установленной в дутьевой канал с воздушным зазором и без зазора, а также газотермического покрытия на температурное поле воздушной фурмы доменной печи. Результаты моделирования показали значительное влияние теплоизолирующей вставки в дутьевой канал и воздушного зазора, отделяющего ее от внутреннего стакана, на температурное поле фурмы. При наличии вставки наблюдается градиент температуры по ее толщине до 540–555 °С, причем максимального значения температура вставки достигает на поверхности со стороны дутьевого канала. В то же время температура внутреннего стакана снижается на 35–40 °С по сравнению с фурмой без вставки. При наличии вставки с воздушным зазором градиент температуры вставки по ее толщине снижается до 160–250 °С по сравнению с вариантом без воздушного зазора, причем максимальное значение температуры поверхности вставки со стороны дутьевого канала также увеличивается. Температура внутреннего стакана также снижается еще на 15–20 °С по сравнению с вариантом без воздушного зазора. Однако наблюдается резкий градиент температуры воздушного зазора по его толщине до 760 °С из-за низкой теплопроводности воздуха. При наличии газотермического покрытия максимальная температура нагрева торца рыльной части снизилась до 326 °С, а максимальный градиент температуры по его толщине также снизился до 67 °С по сравнению с вариантом без покрытия. С помощью программного комплекса DEFORM-2D создана модель, имитирующая прогар фурмы вследствие контака с жидким чугуном. Показано, что через 40 с контакта с чугуном температура на поверхности рыльной части со стороны воды достигает 1050 °С, а через 100 с — 1060 °С, что практически равносильно прогару.
Ключевые слова: доменная печь, воздушная фурма, теплоизолирующая вставка, газотермическое покрытие, DEFORM-2D, температурное поле, прогар фурмы.
Computer simulation of temperature field of blast furnace’s air tuyere
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 117-125Просмотров за год: 7.Study of work of heating equipment is an actual issue because it allows determining optimal regimes to reach highest efficiency. At that it is very helpful to use computer simulation to predict how different heating modes influence the effectiveness of the heating process and wear of heating equipment. Computer simulation provides results whose accuracy is proven by many studies and requires costs and time less than real experiments. In terms of present research, computer simulation of heating of air tuyere of blast furnace was realized with the help of FEM software. Background studies revealed possibility to simulate it as a flat, axisymmetric problem and DEFORM-2D software was used for simulation. Geometry, necessary for simulation, was designed with the help of SolidWorks, saved in .dxf format. Then it was exported to DEFORM-2D pre-processor and positioned. Preliminary and boundary conditions were set up. Several modes of operating regimes were under analysis. In order to demonstrate influence of eah of the modes and for better visualization point tracking option of the DEFORM-2D post-processor was applied. Influence of thermal insulation box plugged into blow channel, with and without air gap, and thermal coating on air tuyere’s temperature field was investigated. Simulation data demonstrated significant effect of thermal insulation box on air tuyere’s temperature field. Designed model allowed to simulate tuyere’s burnout as a result of interaction with liquid iron. Conducted researches have demonstrated DEFORM-2D effectiveness while using it for simulation of heat transfer and heating processes. DEFORM-2D is about to be used in further studies dedicated to more complex process connected with temperature field of blast furnace’s air tuyere.
-
Перспективы использования космоснимков для прогнозирования загрязнения воздуха тяжелыми металлами
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 535-544Контроль за загрязнением воздуха имеет большое значение для стран Европы и Азии. В рамках Конвенции ООН по дальнему трансграничному переносу воздушных загрязнений (СLRTAP) реализуется программа UNECE ICP Vegetation, направленная на определение наиболее неблагополучных областей, создание региональных карт и улучшение понимания природы долгосрочных трансграничных загрязнений. В Объединенном институте ядерных исследований была разработана облачная платформа, предоставляющая участникам программы ICP Vegetation удобные инструменты для сбора, анализа и обработки данных мониторинга. В настоящее время в системе содержится информация о более чем 6000 точках пробоотбора в 40 регионах различных стран Европы и Азии.
Важным этапом контроля является моделирование загрязнений в местах, где частота исследований или плотность покрытия сети сбора образцов недостаточны. Одним из подходов к прогнозированию загрязнений является использование специализированных статистических моделей и методов машинного обучения совместно с различными количественными показателями точек сбора образцов и информацией о концентрациях элементов. Наиболее перспективным источником количественных показателей для обучения моделей являются космические снимки в различных спектрах. Обученная должным образом модель позволит получать прогноз по концентрациям элементов, используя исключительно космоснимки. Специализированная платформа Google Earth Engine предоставляет широкие возможности для анализа и обработки данных от более чем 100 различных проектов дистанционного зондирования земли, удобный интерфейс разработчика на JavaScript и программный интерфейс на Python для использования в сторонних приложениях.
В работе рассматривается возможность использования статистических показателей космоснимков, полученных от платформы Google Earth Engine, совместно с данными мониторинга состояния окружающей среды проекта ICP Vegetation для обучения моделей, способных прогнозировать концентрацию тяжелых металлов в определенных регионах.
Perspectives of using a satellite imagery data for prediction of heavy metals contamination
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 535-544 -
Моделирование трендов динамики объема и структуры накопленной кредитной задолженности в банковской системе
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 965-978Объем и структура накопленной кредитной задолженности перед банковской системой зависят от множества факторов, важнейшим из которых является текущий и ожидаемый уровень процентных ставок. Изменения в поведении заемщиков в ответ на сигналы денежно-кредитной политики позволяют разрабатывать эконометрические модели, представляющие динамику структуры кредитного портфеля банковской системы по срокам размещения средств. Эти модели помогают рассчитать показатели, характеризующие влияние регулирующих действий со стороны центрального банка на уровень процентного риска в целом. В работе проводилась идентификация четырех видов моделей: дискретной линейной модели, основанной на передаточных функциях, модели в пространстве состояний, классической эконометрической модели ARMAX и нелинейной модели типа Гаммерштейна – Винера. Для их описания использовался формальный язык теории автоматического управления, а для идентификации — программный пакет MATLAB. В ходе исследования было выявлено, что для краткосрочного прогнозирования объема и структуры кредитной задолженности больше всего подходит дискретная линейная модель в пространстве состояний, позволяющая прогнозировать тренды по структуре накопленной кредитной задолженности на прогнозном горизонте в 1 год. На примере реальных данных по российской банковской системе модель показывает высокую чувствительность реакции на изменения в денежно-кредитной политике, проводимой центральным банком РФ, структуры кредитной задолженности по срокам ее погашения. Так, при резком повышении процентных ставок в ответ на внешние рыночные шоки заемщики предпочитают сокращать сроки кредитования, при этом общий уровень задолженности повышается прежде всего за счет возрастающей переоценки номинального долга. При формировании устойчивого тренда снижения процентных ставок структура задолженности смещается в сторону долгосрочных кредитов.
Ключевые слова: кредитная задолженность, процентная ставка, динамическое моделирование, модель в пространстве состояний, прогнозирование.
Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.
-
Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.
Ключевые слова: обработка данных, эксперимент, цитокин, иммунная система, пневмония, статистика, аппроксимация, расстояние Хаусдорфа.
Cytokines as indicators of the state of the organism in infectious diseases. Experimental data analysis
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1409-1426When person`s diseases is result of bacterial infection, various characteristics of the organism are used for observation the course of the disease. Currently, one of these indicators is dynamics of cytokine concentrations are produced, mainly by cells of the immune system. There are many types of these low molecular weight proteins in human body and many species of animals. The study of cytokines is important for the interpretation of functional disorders of the body's immune system, assessment of the severity, monitoring the effectiveness of therapy, predicting of the course and outcome of treatment. Cytokine response of the body indicating characteristics of course of disease. For research regularities of such indication, experiments were conducted on laboratory mice. Experimental data are analyzed on the development of pneumonia and treatment with several drugs for bacterial infection of mice. As drugs used immunomodulatory drugs “Roncoleukin”, “Leikinferon” and “Tinrostim”. The data are presented by two types cytokines` concentration in lung tissue and animal blood. Multy-sided statistical ana non statistical analysis of the data allowed us to find common patterns of changes in the “cytokine profile” of the body and to link them with the properties of therapeutic preparations. The studies cytokine “Interleukin-10” (IL-10) and “Interferon Gamma” (IFN$\gamma$) in infected mice deviate from the normal level of infact animals indicating the development of the disease. Changes in cytokine concentrations in groups of treated mice are compared with those in a group of healthy (not infected) mice and a group of infected untreated mice. The comparison is made for groups of individuals, since the concentrations of cytokines are individual and differ significantly in different individuals. Under these conditions, only groups of individuals can indicate the regularities of the processes of the course of the disease. These groups of mice were being observed for two weeks. The dynamics of cytokine concentrations indicates characteristics of the disease course and efficiency of used therapeutic drugs. The effect of a medicinal product on organisms is monitored by the location of these groups of individuals in the space of cytokine concentrations. The Hausdorff distance between the sets of vectors of cytokine concentrations of individuals is used in this space. This is based on the Euclidean distance between the elements of these sets. It was found that the drug “Roncoleukin” and “Leukinferon” have a generally similar and different from the drug “Tinrostim” effect on the course of the disease.
Keywords: data processing, experiment, cytokine, immune system, pneumonia, statistics, approximation, Hausdorff distance. -
Извлечение нечетких знаний при разработке экспертных прогнозных диагностических систем
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1395-1408Экспертные системы имитируют профессиональный опыт и мыслительный процесс специалиста при решении задач в различных предметных областях, в том числе в прогнозной диагностике в медицине и технике. При решении подобных задач применяются нечеткие модели принятия решений, что позволяет использовать профессиональные экспертные знания при формировании прогноза, исключая анализ данных непосредственных экспериментов. При построении нечетких моделей принятия решений используются типовые нечеткие ситуации, анализ которых позволяет сделать вывод специалистам о возникновении в будущем времени нештатных ситуаций. При разработке базы знаний экспертной системы прибегают к опросу экспертов: инженеры по знаниям используют мнение экспертов для оценки соответствия между типовой текущей ситуацией и риском возникновения чрезвычайной ситуации в будущем. В большинстве работ рассматриваются методы извлечения знаний с точки зрения психологических, лингвистических аспектов. Множественные исследования по священы проблемам контактного, процедурного или когнитивного слоев процесса извлечения знаний. Однако в процессе извлечения знаний следует отметить значительную трудоемкость процесса взаимодействия инженеров по знаниям с экспертами при определении типовых нечетких ситуаций и оценок рисков нештатных ситуаций. Причиной трудоемкости является то, что число вопросов, на которые должен ответить эксперт, очень велико. В статье обосновывается метод, который позволяет инженеру по знаниям сократить количество вопросов, задаваемых эксперту, а следовательно, снизить трудоемкость разработки базы знаний. Метод предполагает наличие отношения предпочтения, определяемое на множестве нечетких ситуаций, что позволяет частично автоматизировать формирование оценок частоты наступленияне четких ситуаций и тем самым сократить трудоемкость созданий базы знаний. Для подтверждения проверки и целесообразности предложенного метода проведены модельные эксперименты, результаты которых приведены в статье. На основе предложенного метода разработаны и внедрены в эксплуатацию несколько экспертных систем для прогнозирования групп риска патологий беременных и новорожденных.
Ключевые слова: экспертная система, извлечение знаний, лингвистическая переменная, степень принадлежности, нечеткое правило.
Fuzzy knowledge extraction in the development of expert predictive diagnostic systems
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1395-1408Expert systems imitate professional experience and thinking process of a specialist to solve problems in various subject areas. An example of the problem that it is expedient to solve with the help of the expert system is the problem of forming a diagnosis that arises in technology, medicine, and other fields. When solving the diagnostic problem, it is necessary to anticipate the occurrence of critical or emergency situations in the future. They are situations, which require timely intervention of specialists to prevent critical aftermath. Fuzzy sets theory provides one of the approaches to solve ill-structured problems, diagnosis-making problems belong to which. The theory of fuzzy sets provides means for the formation of linguistic variables, which are helpful to describe the modeled process. Linguistic variables are elements of fuzzy logical rules that simulate the reasoning of professionals in the subject area. To develop fuzzy rules it is necessary to resort to a survey of experts. Knowledge engineers use experts’ opinion to evaluate correspondence between a typical current situation and the risk of emergency in the future. The result of knowledge extraction is a description of linguistic variables that includes a combination of signs. Experts are involved in the survey to create descriptions of linguistic variables and present a set of simulated situations.When building such systems, the main problem of the survey is laboriousness of the process of interaction of knowledge engineers with experts. The main reason is the multiplicity of questions the expert must answer. The paper represents reasoning of the method, which allows knowledge engineer to reduce the number of questions posed to the expert. The paper describes the experiments carried out to test the applicability of the proposed method. An expert system for predicting risk groups for neonatal pathologies and pregnancy pathologies using the proposed knowledge extraction method confirms the feasibility of the proposed approach.
-
Оптимизация словаря команд на основе статистического критерия близости в задаче распознавания невербальной речи
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 675-690В исследовании мы сосредоточились на задаче классификации невербальной речи для разработки интерфейса «мозг–компьютер» (ИМК) на основе электроэнцефалографии (ЭЭГ), который будет способен помочь людям с ограниченными возможностями и расширить возможности человека в повседневной жизни. Ранее наши исследования показали, что беззвучная речь для некоторых слов приводит к почти идентичным распределениям ЭЭГ-данных. Это явление негативно влияет на точность классификации нейросетевой модели. В этой статье предлагается метод обработки данных, который различает статисти- чески удаленные и неразделимые классы данных. Применение предложенного подхода позволяет достичь цели максимального увеличения смысловой нагрузки словаря, используемого в ИМК.
Кроме того, мы предлагаем статистический прогностический критерий точности бинарной классификации слов в словаре. Такой критерий направлен на оценку нижней и верхней границ поведения классификаторов только путем измерения количественных статистических свойств данных (в частности, с использованием метода Колмогорова – Смирнова). Показано, что более высокие уровни точности классификации могут быть достигнуты за счет применения предложенного прогностического критерия, позволяющего сформировать оптимизированный словарь с точки зрения семантической нагрузки для ИМК на основе ЭЭГ. Кроме того, использование такого обучающего набора данных для задач классификации по словарю обеспечивает статистическую удаленность классов за счет учета семантических и фонетических свойств соответствующих слов и улучшает поведение классификации моделей распознавания беззвучной речи.
Ключевые слова: интерфейс «мозг–компьютер», ЭЭГ, классификация невербальной речи, графовый алгоритм выбора словаря, ИМК, оптимизация глубокого обучения, распознавание невербальной речи, статистический критерий близости.
Optimization of the brain command dictionary based on the statistical proximity criterion in silent speech recognition task
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 675-690In our research, we focus on the problem of classification for silent speech recognition to develop a brain– computer interface (BCI) based on electroencephalographic (EEG) data, which will be capable of assisting people with mental and physical disabilities and expanding human capabilities in everyday life. Our previous research has shown that the silent pronouncing of some words results in almost identical distributions of electroencephalographic signal data. Such a phenomenon has a suppressive impact on the quality of neural network model behavior. This paper proposes a data processing technique that distinguishes between statistically remote and inseparable classes in the dataset. Applying the proposed approach helps us reach the goal of maximizing the semantic load of the dictionary used in BCI.
Furthermore, we propose the existence of a statistical predictive criterion for the accuracy of binary classification of the words in a dictionary. Such a criterion aims to estimate the lower and the upper bounds of classifiers’ behavior only by measuring quantitative statistical properties of the data (in particular, using the Kolmogorov – Smirnov method). We show that higher levels of classification accuracy can be achieved by means of applying the proposed predictive criterion, making it possible to form an optimized dictionary in terms of semantic load for the EEG-based BCIs. Furthermore, using such a dictionary as a training dataset for classification problems grants the statistical remoteness of the classes by taking into account the semantic and phonetic properties of the corresponding words and improves the classification behavior of silent speech recognition models.
-
Предсказание имплантационного потенциала эмбрионов на основе морфологической оценки
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 111-116Ранние зародыши на стадии бластоцисты, полученные in vitro, имеют низкий имплантационный потенциал. Данная работа посвящена оценке морфологии бластоцист, способных имплантироваться после микроинъекции. Скорость восстановления объема бластоцист после микроинъекции позволяет оценивать активность клеток трофобласта, участвующих в имплантации. Предложена модель для прогнозирования эффективности развития зародышей мышей на стадии бластоцисты in vitro. Показано, что скорость восстановления морфологии бластоцисты является наиболее важной характеристикой имплантационного потенциала зародышей. Максимальная скорость восстановления внутреннего объема (35.7 % от исходного объема в течение 1 ч) коррелирует со способностью бластоцист формировать первичные колонии эмбриональных клеток через 72 ч in vitro, что соответствует процессу имплантации. С помощью ROC-анализа и значения AUC (area under curve) установлено, что комбинация таких признаков как стадия бластоцисты (например средняя или поздняя бластоциста) и скорость восстановления внутреннего объема обладают высокой ценностью для предсказания имплантационного потенциала.
Prediction of embryo implantation potential by morphology assessment
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 111-116The early embryos developing in vitro to the blastocyst stage have low implantation potential. In the current work the microinjection was used to evaluate the most viable blastocysts with high implantation ability on the basis of morphology changing. The recovery rate of the embryo volume allows assessing the functional activity of trophoblast cells that involved in implantation. The predictive model is suggested to forecast the development effectiveness of blastocysts in vitro. It’s shown the recovery rate of the blastocyst volume after microinjection is the most important feature of implantation potential of early embryos. The maximal recovery rate of blastocyst volume (35.7 % of initial volume per 1 h) correlates with the embryos ability to generate the colonies 72 h after microinjection. By the area under receiver operator curve (AUC) it was shown that combination of such characteristics as blastocyst stage (middle and late) and recovery rate after microinjection allowed to predict the blastocyst development.
-
Укрупненная модель эколого-экономической системы на примере Республики Армения
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 621-631В настоящей статье представлена укрупненная динамическая модель эколого-экономической системы Республики Армения (РА). Такая модель построена с использованием методов системной динамики, позволяющих учесть важнейшие обратные связи, относящиеся к ключевым характеристикам эколого-экономической системы. Данная модель является двухкритериальной задачей, где в качестве целевого функционала рассматриваются уровень загрязнения воздуха и валовой прибыли национальной экономики. Уровень загрязнения воздуха минимизируется за счет модернизации стационарных и мобильных источников загрязнения при одновременной максимизации валовой прибыли национальной экономики. При этом рассматриваемая эколого-экономическая система характеризуется наличием внутренних ограничений, которые должны быть учтены при принятии стратегических решений. В результате предложен системный подход, позволяющий формировать рациональные решения по развитию производственной сферы РА при минимизации воздействия на окружающую среду. С помощью предлагаемого подхода, в частности, можно формировать план по оптимальной модернизации предприятий и прогнозировать долгосрочную динамику выбросов вредных веществ в атмосферу.
Ключевые слова: экологическое моделирование, системная динамика, многопараметрическая оптимизация, имитационное моделирование.
The integrated model of eco-economic system on the example of the Republic of Armenia
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 621-631Просмотров за год: 14. Цитирований: 7 (РИНЦ).This article presents an integrated dynamic model of eco-economic system of the Republic of Armenia (RA). This model is constructed using system dynamics methods, which allow to consider the major feedback related to key characteristics of eco-economic system. Such model is a two-objective optimization problem where as target functions the level of air pollution and gross profit of national economy are considered. The air pollution is minimized due to modernization of stationary and mobile sources of pollution at simultaneous maximization of gross profit of national economy. At the same time considered eco-economic system is characterized by the presence of internal constraints that must be accounted at acceptance of strategic decisions. As a result, we proposed a systematic approach that allows forming sustainable solutions for the development of the production sector of RA while minimizing the impact on the environment. With the proposed approach, in particular, we can form a plan for optimal enterprise modernization and predict long-term dynamics of harmful emissions into the atmosphere.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"