Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
Ключевые слова: демографическая динамика, динамика человеческого капитала, математическое моделирование, уравнения переноса, разностная схема, составляющие человеческого капитала, инвестиции в человеческий капитал.
Mathematical modeling of the human capital dynamic
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342Просмотров за год: 34.In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.
This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.
The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.
-
Применение ансамбля нейросетей и методов статистической механики для предсказания связывания пептида с главным комплексом гистосовместимости
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1383-1395Белки главного комплекса гистосовместимости (ГКГС) играют ключевую роль в работе адаптивной иммунной системы, и определение связывающихся с ними пептидов — важный шаг в разработке вакцин и понимании механизмов аутоиммунных заболеваний. На сегодняшний день существует ряд методов для предсказания связывания определенной аллели ГКГС с пептидом. Одним из лучших таких методов является NetMHCpan-4.0, основанный на ансамбле искусственных нейронных сетей. В данной работе представлена методология качественного улучшения архитектуры нейронной сети, лежащей в основе NetMHCpan-4.0. Предлагаемый метод использует технику построения ансамбля и добавляет в качестве входных данных оценку модели Поттса, взятой из статистической механики и являющейся обобщением модели Изинга. В общем случае модельо тражает взаимодействие спинов в кристаллической решетке. Применительно к задаче белок-пептидного взаимодействия вместо спинов используются типы аминокислот, находящихся в кармане связывания. В предлагаемом методе модель Поттса используется для более всестороннего представления физической природы взаимодействия полипептидных цепей, входящих в состав комплекса. Для оценки взаимодействия комплекса «ГКГС + пептид» нами используется двумерная модель Поттса с 20 состояниями (соответствующими основным аминокислотам). Решая обратную задачу с использованием данных об экспериментально подтвержденных взаимодействующих парах, мы получаем значения параметров модели Поттса, которые затем применяем для оценки новой пары «ГКГС + пептид», и дополняем этим значением входные данные нейронной сети. Такой подход, в сочетании с техникой построения ансамбля, позволяет улучшитьт очность предсказания, по метрике положительной прогностической значимости (PPV), по сравнению с базовой моделью.
Ключевые слова: главный комплекс гистосовместимости, аффинностьсв язывания, нейронная сеть, машинное обучение, модельП оттса.
Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.
-
Применение модели кинетического типа для изучения пространственного распространения COVID-19
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.
Application of the kinetic type model for study of a spatial spread of COVID-19
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.
-
Методика имитационного моделирования на основе обучающих данных для двухфазного течения в гетерогенной пористой среде
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 779-792Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.
Ключевые слова: имитационное моделирование, нейросетевые модели физических процессов, суррогатное моделирование, гидродинамика, пористая среда, сверточные нейронные сети, состязательное обучение.
Data-driven simulation of a two-phase flow in heterogenous porous media
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.
-
Экспериментальное сравнение алгоритмов поиска вектора PageRank
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 369-379Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса – Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса – Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса – Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.
Experimental comparison of PageRank vector calculation algorithms
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 369-379Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix $P$, the need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution time, various randomized methods have been proposed, returning the expected result only with some probability close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis – Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix. As far as we know, there are no successful implementations of neither the Grigoriadis – Khachiyan algorithm nor its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC), in order to compare the results of these algorithms on matrices with different values of the spectral gap. The latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of generated graphs: chains and $d$-dimensional cubes. The experiments, as predicted by the theory, demonstrated the effectiveness of the Grigoriadis – Khachiyan algorithm in comparison with MCMC for sparse graphs with a small spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or use this implementation for their own needs. The work has a purely practical orientation, no theoretical results were obtained.
-
Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.
Ключевые слова: метапопуляция, связанные системы, случайные возмущения, стохастическая чувствительность, переход «порядок – хаос», модель Рикера.
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
Эффективная диагностика сердечно-сосудистых заболеваний с использованием композиционного глубокого обучения и техники объяснимого искусственного интеллекта
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1651-1666Сердечно-сосудистые заболевания на протяжении последних десятилетий представляют собой серьезную угрозу здоровью населения во всем мире, независимо от уровня развития страны. Ранняя диагностика и постоянный медицинский контроль могли бы значительно снизить смертность от этих заболеваний. Однако существующие системы здравоохранения зачастую не в состоянии обеспечить необходимый уровень мониторинга пациентов из-за ограниченных ресурсов.
В рамках нашего исследования мы использовали метод SHAP для объяснения работы модели глубокого обучения Bi-LSTM+CNN, разработанной для прогнозирования сердечно-сосудистых заболеваний. Путем балансировки данных и применения кросс-валидации мы достигли высокой точности (99,05%), полноты (99%) и F1-меры (99%) модели. Интерпретируемость модели, обеспечиваемая методом SHAP, повышает доверие медицинских специалистов к полученным результатам и способствует более широкому внедрению искусственного интеллекта в клиническую практику.
Ключевые слова: объяснимый ИИ, обратное исключение, REFCV, сердечно-сосудистые заболевания, здравоохранение, глубокое обучение.
Efficient diagnosis of cardiovascular disease using composite deep learning and explainable AI technique
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1651-1666During the last several decades, cardiovascular disease has surpassed all others as the leading cause of mortality in both high-income and low-income countries. The mortality rate from heart disorders may be lowered with early identification and close clinical monitoring. However, it is not feasible to adequately monitor patients every day, and 24-hour consultation with a doctor is not a feasible option, since it requires more sagacity, time, and knowledge than is currently available.
In this study, we examine the Explainable Artificial Intelligence (XAI) technique, namely, the SHAP interpretability approach, in order to educate the medical professionals about the Explainable AI (XAI) methods that can be helpful in healthcare. The XAI methods enhance the trust and understandability of both practitioners and Health Researchers in AI Models. In this work, we propose a composite Deep Learning model: Bi-LSTM+CNN model to effectively predict heart disease from patient data. After balancing the dataset, the Bi-LSTM+CNN model was used. In contrast to other studies, our proposed hybrid deep learning model produced excellent experimental results, including 99.05% accuracy, 99% precision, 99% recall, and 99% F1-score.
-
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
Ключевые слова: Allee effect, prey refuge, predator – prey, eco-epidemiological model, nonlinear incidence rate, local stability, global stability, Hopf bifurcation, transcritical bifurcation.
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
-
Оценка кредитного риска на основе методов многомерного анализа
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 893-901В статье предложена авторская методика многомерного анализа для формирования прогнозной оценки кредитного риска организаций, основанная на использовании информации кредитных историй, учитывающая объемы и сроки предоставляемых кредитов. Рассмотрен пример оценки кредитного риска на статистических данных кредитной организации.
Ключевые слова: оценка и прогнозирование риска, многомерный анализ данных, кластерный анализ, факторный анализ, кредитные организации.
Credit risk assessment on the basis of multidimensional analysis
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 893-901Просмотров за год: 7. Цитирований: 19 (РИНЦ).The article is devoted to description the author's method of multidimensional analysis for generate an predictive assessment of organizations’ credit risk, based on the credit history information, which taking into account value and period of credit. An example of credit risk assessment is given.
-
Влияние метаболизма клеток на выход биомассы при росте на различных субстратах
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 993-1014Рассмотрены биоэнергетические закономерности, определяющие максимальный выход биомассы при аэробном росте микроорганизмов на различных субстратах. Подход основан на методе материально- энергетического баланса и использовании пакета компьютерных программ GenMetPath. Сформулирована система уравнений, описывающих балансы количеств (1) восстановленности метаболитов и (2) образованных и затраченных макроэргических связей. Чтобы сформулировать эту систему, целостный метаболизм разделен на конструктивный и энергетический парциальные обмены. Конструктивный обмен, в свою очередь, разделен на две части: передний и стандартный конструктивные обмены. Последнее разделение основано на выборе узловых метаболитов. Передний конструктивный обмен существенно зависит от субстрата роста: он превращает субстрат в стандартный набор узловых метаболитов. Последний затем превращается в макромолекулы биомассы стандартным конструктивным обменом, который одинаков на различных субстратах. Показано, что вариации потоков через узловые метаболиты оказывают незначительное влияние на стандартный конструктивный обмен. В качестве отдельного случая рассмотрен рост на субстратах, требующих участия оксигеназ и/или оксидаз. Биоэнергетические характеристики стандартного конструктивного обмена найдены из большого числа данных для роста различных организмов на глюкозе. Описанный подход может быть использован для предсказания выхода биомассы на субстратах с известными реакциями их первичной метаболизации. В качестве примера рассмотрен рост культуры дрожжей на этаноле. Значение максимального выхода, предсказанное описанным здесь методом, показало хорошее соответствие значению, найденному экспериментально.
Ключевые слова: выход биомассы, метаболизм клеток, конструктивный обмен, энергетический обмен, узловые метаболиты, материально-энергетический баланс.
The effect of cell metabolism on biomass yield during the growth on various substrates
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 993-1014Просмотров за год: 17.Bioenergetic regularities determining the maximal biomass yield in aerobic microbial growth on various substrates have been considered. The approach is based on the method of mass-energy balance and application of GenMetPath computer program package. An equation system describing the balances of quantities of 1) metabolite reductivity and 2) high-energy bonds formed and expended has been formulated. In order to formulate the system, the whole metabolism is subdivided into constructive and energetic partial metabolisms. The constructive metabolism is, in turn, subdivided into two parts: forward and standard. The latter subdivision is based on the choice of nodal metabolites. The forward constructive metabolism is substantially dependent on growth substrate: it converts the substrate into the standard set of nodal metabolites. The latter is, then, converted into biomass macromolecules by the standard constructive metabolism which is the same on various substrates. Variations of flows via nodal metabolites are shown to exert minor effects on the standard constructive metabolism. As a separate case, the growth on substrates requiring the participation of oxygenases and/or oxidase is considered. The bioenergetic characteristics of the standard constructive metabolism are found from a large amount of data for the growth of various organisms on glucose. The described approach can be used for prediction of biomass growth yield on substrates with known reactions of their primary metabolization. As an example, the growth of a yeast culture on ethanol has been considered. The value of maximal growth yield predicted by the method described here showed very good consistency with the value found experimentally.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





