Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Неэкстенсивная статистика Тсаллиса системы контрактоворганизаций оборонно-промышленного комплекса
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1163-1183В работе проведен анализ системы контрактов, заключаемых организациями оборонно-промышленного комплекса России в процессе выполнения государственного оборонного заказа. Сделан вывод, что для описания данной системы может быть использована методология статистической механики. По аналогии с подходом, применяемым при рассмотрении большого канонического ансамбля Гиббса, изучаемый ансамбль сформирован в виде набора мгновенных «картинок», образованных из действующих в каждый момент времени неразличимых контрактов со своими стоимостями. Показано, что ограничения, накладываемые государством на процесс ценообразования, являются причиной того, что совокупность контрактов может быть отнесена к категории так называемых сложных систем, для описания которых используется неэкстенсивная статистика Тсаллиса. Это приводит к тому, что стоимостные распределения контрактов должны соответствовать деформированному распределению Бозе–Эйнштейна, полученному с использованием энтропии Тсаллиса. Данный вывод справедлив как для всей совокупности контрактов, заключаемых участниками выполнения государственного оборонного заказа, так и контрактов, заключаемых отдельной организацией в качестве исполнителя.
Для анализа степени соответствия эмпирических стоимостных распределений модифицированному распределению Бозе–Эйнштейна в настоящей работе использован метод сравнения соответствующих функций распределения вероятностей. В работе делается вывод о том, что для изучения стоимостных распределений контрактов отдельной организации в качестве анализируемых данных можно использовать сформировавшиеся за календарный год распределения выручки по отдельным заказам, соответствующим заключенным контрактам. Получены эмпирические функции распределения вероятностей ранжированных значений выручки от реализации по отдельным заказам АО «Концерн «ЦНИИ «Электроприбор», одной из ведущих приборостроительных организаций ОПК России, с 2007 по 2021 год. Наблюдается хорошее согласие между эмпирическими и теоретическими функциями распределений вероятностей, рассчитанными с использованием деформированных распределений Бозе–Эйнштейна в пределе «разряженного газа контрактов». Полученные на основе эмпирических данных значения параметров энтропийного индекса для каждого из изученных распределений выручки свидетельствуют о достаточно высокой степени неаддитивности, присущей изучаемой системе. Показано, что для оценки характеристических стоимостей распределений можно использовать величину среднего значения годовой выручки, рассчитанного с помощью нормированного эскортного распределения. Факт наилучшего согласия эмпирических и теоретических функций распределения вероятностей при нулевых значениях химического потенциала позволяет сделать предположение, что изучаемый «газ контрактов» можно сравнить с газом фотонов, в котором число частиц не является постоянным.
Ключевые слова: эконофизика, статистика Тсаллиса, сложные системы, стоимостные распределенияк онтрактов, деформированное распределение Бозе – Эйнштейна.
Nonextensive Tsallis statistics of contract system of prime contractors and subcontractors in defense industry
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1163-1183In this work, we analyze the system of contracts made by Russian defense enterprises in the process of state defense order execution. We conclude that methods of statistical mechanics can be applied to the description of the given system. Following the original grand-canonical ensemble approach, we can create the statistical ensemble under investigation as a set of instant snapshots of indistinguishable contracts having individual values. We show that due to government regulations of contract prices the contract system can be described in terms of nonextensive Tsallis statistics. We have found that probability distributions of contract prices correspond to deformed Bose – Einstein distributions obtained using nonextensive Tsallis entropy. This conclusion is true both in the case of the whole set of contracts and in the case of the contracts made by an individual defense company as a seller.
In order to analyze how deformed Bose – Einstein distributions fit the empirical contract price distributions we compare the corresponding cumulative distribution functions. We conclude that annual distributions of individual sales which correspond to each company’s contract (order) can be used as relevant data for contract price distributions analysis. The empirical cumulative distribution functions for the individual sales ranking of Concern CSRI Elektropribor, one of the leading Russian defense companies, are analyzed for the period 2007–2021. The theoretical cumulative distribution functions, obtained using deformed Bose – Einstein distributions in the case of «rare contract gas» limit, fit well to the empirical cumulative distribution functions. The fitted values for the entropic index show that the degree of nonextensivity of the system under investigations is rather high. It is shown that the characteristic prices of distributions can be estimated by weighing the values of annual individual sales with the escort probabilities. Given that the fitted values of chemical potential are equal to zero, we suggest that «gas of contracts» can be compared to photon gas in which the number of particles is not conserved.
-
Эффективное и безошибочное сокрытие информации в гибридном домене цифровых изображений с использованием метаэвристической оптимизации
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 197-210Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.
Ключевые слова: стеганография, цифровые изображения, метаэвристическая оптимизация, генетический алгоритм, дифференциальная эволюция, оптимизация роя частиц.
Efficient and error-free information hiding in the hybrid domain of digital images using metaheuristic optimization
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 197-210Data hiding in digital images is a promising direction of cybersecurity. Digital steganography methods provide imperceptible transmission of secret data over an open communication channel. The information embedding efficiency depends on the embedding imperceptibility, capacity, and robustness. These quality criteria are mutually inverse, and the improvement of one indicator usually leads to the deterioration of the others. A balance between them can be achieved using metaheuristic optimization. Metaheuristics are a class of optimization algorithms that find an optimal, or close to an optimal solution for a variety of problems, including those that are difficult to formalize, by simulating various natural processes, for example, the evolution of species or the behavior of animals. In this study, we propose an approach to data hiding in the hybrid spatial-frequency domain of digital images based on metaheuristic optimization. Changing a block of image pixels according to some change matrix is considered as an embedding operation. We select the change matrix adaptively for each block using metaheuristic optimization algorithms. In this study, we compare the performance of three metaheuristics such as genetic algorithm, particle swarm optimization, and differential evolution to find the best change matrix. Experimental results showed that the proposed approach provides high imperceptibility of embedding, high capacity, and error-free extraction of embedded information. At the same time, storage of change matrices for each block is not required for further data extraction. This improves user experience and reduces the chance of an attacker discovering the steganographic attachment. Metaheuristics provided an increase in imperceptibility indicator, estimated by the PSNR metric, and the capacity of the previous algorithm for embedding information into the coefficients of the discrete cosine transform using the QIM method [Evsutin, Melman, Meshcheryakov, 2021] by 26.02% and 30.18%, respectively, for the genetic algorithm, 26.01% and 19.39% for particle swarm optimization, 27.30% and 28.73% for differential evolution.
-
Высокопроизводительные вычисления в моделировании крови
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 917-941Приведен обзор методов моделирования движения и реологических свойств крови как суспензии взвешенных частиц. Рассмотрены методы граничных интегральных уравнений, решеточных уравнений Больцмана, конечных элементов на подвижных сетках, диссипативной динамики частиц, а также агентные модели. Приведен анализ применения этих методов при расчетах на высокопроизводительных системах различной архитектуры.
Ключевые слова: кровь, гемодинамика, неньютоновская жидкость, эритроциты, высокопроизводительные вычисления.
High Performance Computing for Blood Modeling
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 917-941Просмотров за год: 2. Цитирований: 3 (РИНЦ).Methods for modeling blood flow and its rheological properties are reviewed. Blood is considered as a particle suspencion. The methods are boundary integral equation method (BIEM), lattice Boltzmann (LBM), finite elements on dynamic mesh, dissipative particle dynamics (DPD) and agent based modeling. The analysis of these methods’ applications on high-performance systems with various architectures is presented.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"