Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'optimal method':
Найдено статей: 153
  1. Вавилова Д.Д., Кетова К.В., Зерари Р.
    Компьютерное моделирование динамики валового регионального продукта: сравнительный анализ нейросетевых моделей
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1219-1236

    Анализ экономических показателей региона играет важную роль в управлении и планировании развития, при этом валовой региональный продукт (ВРП) является одним из ключевых индикаторов экономической деятельности. Применение искусственного интеллекта, в том числе нейросетевых технологий, позволяет значительно повысить точность и надежность прогнозов экономических процессов. В данном исследовании сравниваются три модели нейросетевых алгоритмов для прогнозирования ВРП одного из типичных регионов РФ — Удмуртской Республики — на основе временных рядов за период с 2000 по 2023 год. В качестве моделей выбраны нейронная сеть с алгоритмом летучей мыши (BA-LSTM), модель нейронной сети обратного распространения ошибки, оптимизированная с помощью генетического алгоритма (GA-BPNN), и нейросетевая модель Элмана, оптимизированная алгоритмом роя частиц (PSO-Elman). В ходе исследования были выполнены такие этапы нейросетевого моделирования, как подготовка исходных данных, обучение моделей и их сравнительный анализ по показателям точности и качества прогнозов. Такой подход позволяет оценить преимущества и недостатки каждой модели в контексте прогнозирования ВРП, а также определить наиболее перспективные направления для дальнейших исследований. Использование современных нейросетевых методов открывает новые возможности для автоматизации анализа региональной экономики и повышения качества прогнозных оценок, что особенно актуально при ограниченных данных и для оперативного принятия решений. В исследовании в качестве входных данных для прогнозирования ВРП используются такие факторы, как величина производственного капитала, среднегодовая численность трудовых ресурсов, доля продукции высокотехнологичных и наукоемких отраслей в ВРП, а также показатель, учитывающий инфляцию. Высокая точность прогнозов, достигнутая в результате включения этих факторов в нейросетевые модели, подтверждает наличие сильной связи между этими факторами и ВРП. Результаты исследования показали высокую точность нейросетевой модели BA-LSTM на валидационной выборке: коэффициент детерминации составил 0,82, средняя абсолютная процентная ошибка — 4,19%. Качество и надежность этой модели свидетельствуют о ее способности эффективно предсказы- вать динамику ВРП. В прогнозном периоде до 2030 года в Удмуртской Республике ожидается ежегодное увеличение ВРП +4,6% в текущих ценах или +2,5% в сопоставимых ценах 2023 года. К 2030 году прогнозируется ВРП на уровне 1264,5 млрд руб.

    Vavilova D.D., Ketova K.V., Zerari R.
    Computer modeling of the gross regional product dynamics: a comparative analysis of neural network models
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1219-1236

    Analysis of regional economic indicators plays a crucial role in management and development planning, with Gross Regional Product (GRP) serving as one of the key indicators of economic activity. The application of artificial intelligence, including neural network technologies, enables significant improvements in the accuracy and reliability of forecasts of economic processes. This study compares three neural network algorithm models for predicting the GRP of a typical region of the Russian Federation — the Udmurt Republic — based on time series data from 2000 to 2023. The selected models include a neural network with the Bat Algorithm (BA-LSTM), a neural network model based on backpropagation error optimized with a Genetic Algorithm (GA-BPNN), and a neural network model of Elman optimized using the Particle Swarm Optimization algorithm (PSO-Elman). The research involved stages of neural network modeling such as data preprocessing, training model, and comparative analysis based on accuracy and forecast quality metrics. This approach allows for evaluating the advantages and limitations of each model in the context of GRP forecasting, as well as identifying the most promising directions for further research. The utilization of modern neural network methods opens new opportunities for automating regional economic analysis and improving the quality of forecast assessments, which is especially relevant when data are limited and for rapid decision-making. The study uses factors such as the amount of production capital, the average annual number of labor resources, the share of high-tech and knowledge-intensive industries in GRP, and an inflation indicator as input data for predicting GRP. The high accuracy of the predictions achieved by including these factors in the neural network models confirms the strong correlation between these factors and GRP. The results demonstrate the exceptional accuracy of the BA-LSTM neural network model on validation data: the coefficient of determination was 0.82, and the mean absolute percentage error was 4.19%. The high performance and reliability of this model confirm its capacity to predict effectively the dynamics of the GRP. During the forecast period up to 2030, the Udmurt Republic is expected to experience an annual increase in Gross Regional Product (GRP) of +4.6% in current prices or +2.5% in comparable 2023 prices. By 2030, the GRP is projected to reach 1264.5 billion rubles.

  2. Акопов А.С., Бекларян Л.А., Бекларян А.Л., Сагателян А.К.
    Укрупненная модель эколого-экономической системы на примере Республики Армения
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 621-631

    В настоящей статье представлена укрупненная динамическая модель эколого-экономической системы Республики Армения (РА). Такая модель построена с использованием методов системной динамики, позволяющих учесть важнейшие обратные связи, относящиеся к ключевым характеристикам эколого-экономической системы. Данная модель является двухкритериальной задачей, где в качестве целевого функционала рассматриваются уровень загрязнения воздуха и валовой прибыли национальной экономики. Уровень загрязнения воздуха минимизируется за счет модернизации стационарных и мобильных источников загрязнения при одновременной максимизации валовой прибыли национальной экономики. При этом рассматриваемая эколого-экономическая система характеризуется наличием внутренних ограничений, которые должны быть учтены при принятии стратегических решений. В результате предложен системный подход, позволяющий формировать рациональные решения по развитию производственной сферы РА при минимизации воздействия на окружающую среду. С помощью предлагаемого подхода, в частности, можно формировать план по оптимальной модернизации предприятий и прогнозировать долгосрочную динамику выбросов вредных веществ в атмосферу.

    Akopov A.S., Beklaryan L.A., Beklaryan A.L., Saghatelyan A.K.
    The integrated model of eco-economic system on the example of the Republic of Armenia
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 621-631

    This article presents an integrated dynamic model of eco-economic system of the Republic of Armenia (RA). This model is constructed using system dynamics methods, which allow to consider the major feedback related to key characteristics of eco-economic system. Such model is a two-objective optimization problem where as target functions the level of air pollution and gross profit of national economy are considered. The air pollution is minimized due to modernization of stationary and mobile sources of pollution at simultaneous maximization of gross profit of national economy. At the same time considered eco-economic system is characterized by the presence of internal constraints that must be accounted at acceptance of strategic decisions. As a result, we proposed a systematic approach that allows forming sustainable solutions for the development of the production sector of RA while minimizing the impact on the environment. With the proposed approach, in particular, we can form a plan for optimal enterprise modernization and predict long-term dynamics of harmful emissions into the atmosphere.

    Просмотров за год: 14. Цитирований: 7 (РИНЦ).
  3. Сайранов А.С., Касаткина Е.В., Нефедов Д.Г., Русяк И.Г.
    Применение генетических алгоритмов для управления организационными системами при возникновении нештатных ситуаций
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 533-556

    Оптимальное управление системой топливоснабжения заключается в выборе варианта развития энергетики, при котором достигается наиболее эффективное и надежное топливо- и энергоснабжение потребителей. В рамках реализации программы перевода распределенной системы теплоснабжения Удмуртской Республики на возобновляемые источники энергии была разработана информационно-аналитическая система управления топливоснабжением региона альтернативными видами топлива. В работе представлена математическая модель оптимального управления логистической системой топливоснабжения, состоящая из трех взаимосвязанных уровней: пункты накопления сырья, пункты производства топлива и пункты потребления. С целью повышения эффективности функционирования системы топливоснабжения региона информационно-аналитическая система расширена функционалом оперативного реагирования при возникновении нештатных ситуаций. Возникновение нештатных ситуаций на любом из уровней требует перестроения управления всей системой. Разработаны модели и алгоритмы оптимального управления в случае возникновения нештатных ситуаций, связанных с выходом из строя производственных звеньев логистической системы: пунктов накопления сырья и пунктов производства топлива. В математических моделях оптимального управления в качестве целевого критерия учитываются расходы, связанные с функционированием логистической системы при возникновении нештатной ситуации. Реализация разработанных алгоритмов основана на применении генетических алгоритмов оптимизации, что позволяет достичь наилучших результатов по времени работы алгоритма и точности полученного решения. Разработанные модели и алгоритмы интегрированы в информационно-аналитическую систему и позволяют оперативно реагировать на возникновение чрезвычайных ситуаций в системе топливоснабжения Удмуртской Республики путем применения альтернативных видов топлива.

    Sairanov A.S., Kasatkina E.V., Nefedov D.G., Rusyak I.G.
    The application of genetic algorithms for organizational systems’ management in case of emergency
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 533-556

    Optimal management of fuel supply system boils down to choosing an energy development strategy which provides consumers with the most efficient and reliable fuel and energy supply. As a part of the program on switching the heat supply distributed management system of the Udmurt Republic to renewable energy sources, an “Information-analytical system of regional alternative fuel supply management” was developed. The paper presents the mathematical model of optimal management of fuel supply logistic system consisting of three interconnected levels: raw material accumulation points, fuel preparation points and fuel consumption points, which are heat sources. In order to increase effective the performance of regional fuel supply system a modification of information-analytical system and extension of its set of functions using the methods of quick responding when emergency occurs are required. Emergencies which occur on any one of these levels demand the management of the whole system to reconfigure. The paper demonstrates models and algorithms of optimal management in case of emergency involving break down of such production links of logistic system as raw material accumulation points and fuel preparation points. In mathematical models, the target criterion is minimization of costs associated with the functioning of logistic system in case of emergency. The implementation of the developed algorithms is based on the usage of genetic optimization algorithms, which made it possible to obtain a more accurate solution in less time. The developed models and algorithms are integrated into the information-analytical system that enables to provide effective management of alternative fuel supply of the Udmurt Republic in case of emergency.

    Просмотров за год: 31.
  4. Борисова Л.Р., Кузнецова А.В., Сергеева Н.В., Сенько О.В.
    Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215

    В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.

    Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.

    Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.

    Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.

    Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.

    Borisova L.R., Kuznetsova A.V., Sergeeva N.V., Sen'ko O.V.
    Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215

    The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.

  5. Алпатов А.В., Петерс Е.А., Пасечнюк Д.А., Райгородский А.М.
    Стохастическая оптимизация в задаче цифрового предыскажения сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416

    В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.

    Alpatov A.V., Peters E.A., Pasechnyuk D.A., Raigorodsky A.M.
    Stochastic optimization in digital pre-distortion of the signal
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 399-416

    In this paper, we test the performance of some modern stochastic optimization methods and practices with respect to the digital pre-distortion problem, which is a valuable part of processing signal on base stations providing wireless communication. In the first part of our study, we focus on the search for the best performing method and its proper modifications. In the second part, we propose the new, quasi-online, testing framework that allows us to fit our modeling results with the behavior of real-life DPD prototype, retest some selected of practices considered in the previous section and approve the advantages of the method appearing to be the best under real-life conditions. For the used model, the maximum achieved improvement in depth is 7% in the standard regime and 5% in the online regime (metric itself is of logarithmic scale). We also achieve a halving of the working time preserving 3% and 6% improvement in depth for the standard and online regime, respectively. All comparisons are made to the Adam method, which was highlighted as the best stochastic method for DPD problem in [Pasechnyuk et al., 2021], and to the Adamax method, which is the best in the proposed online regime.

  6. Стонякин Ф.С., Савчyк О.С., Баран И.В., Алкуса М.С., Титов А.А.
    Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432

    Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.

    Stonyakin F.S., Savchuk O.S., Baran I.V., Alkousa M.S., Titov A.A.
    Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 413-432

    This paper is devoted to some variants of improving the convergence rate guarantees of the gradient-type algorithms for relatively smooth and relatively Lipschitz-continuous problems in the case of additional information about some analogues of the strong convexity of the objective function. We consider two classes of problems, namely, convex problems with a relative functional growth condition, and problems (generally, non-convex) with an analogue of the Polyak – Lojasiewicz gradient dominance condition with respect to Bregman divergence. For the first type of problems, we propose two restart schemes for the gradient type methods and justify theoretical estimates of the convergence of two algorithms with adaptively chosen parameters corresponding to the relative smoothness or Lipschitz property of the objective function. The first of these algorithms is simpler in terms of the stopping criterion from the iteration, but for this algorithm, the near-optimal computational guarantees are justified only on the class of relatively Lipschitz-continuous problems. The restart procedure of another algorithm, in its turn, allowed us to obtain more universal theoretical results. We proved a near-optimal estimate of the complexity on the class of convex relatively Lipschitz continuous problems with a functional growth condition. We also obtained linear convergence rate guarantees on the class of relatively smooth problems with a functional growth condition. For a class of problems with an analogue of the gradient dominance condition with respect to the Bregman divergence, estimates of the quality of the output solution were obtained using adaptively selected parameters. We also present the results of some computational experiments illustrating the performance of the methods for the second approach at the conclusion of the paper. As examples, we considered a linear inverse Poisson problem (minimizing the Kullback – Leibler divergence), its regularized version which allows guaranteeing a relative strong convexity of the objective function, as well as an example of a relatively smooth and relatively strongly convex problem. In particular, calculations show that a relatively strongly convex function may not satisfy the relative variant of the gradient dominance condition.

  7. Сухов Е.А., Чекина Е.А.
    Программный комплекс для численного моделирования движения систем многих тел
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 161-174

    В настоящей работе решается задача численного моделирования движения механических систем, состоящих из твердых тел с произвольными массово-инерционными характеристиками. Предполагается, что рассматриваемые системы являются пространственными и могут содержать замкнутые кинематические цепи. Движение системы происходит под действием внешних и внутренних сил достаточно произвольного вида.

    Моделирование движения механической системы производится полностью автоматически при помощи вычислительного алгоритма, состоящего из трех основных этапов. На первом этапе на основе задаваемых пользователем начальных данных выполняется построение графа механической системы, представляющего ее иерархическую структуру. На втором этапе происходит вывод дифференциально-алгебраических уравнений движения системы. Для вывода уравнений движения используется так называемый метод шарнирных координат. Отличительной чертой данного метода является сравнительно небольшое количество получаемых уравнений движения, что позволяет повысить производительность вычислений. На третьем этапе выполняются численное интегрирование уравнений движения и вывод результатов моделирования.

    Указанный алгоритм реализован в виде программного комплекса, содержащего систему символьной математики, библиотеку графов, механический решатель, библиотеку численных методов и пользовательский интерфейс.

    Sukhov E.A., Chekina E.A.
    Software complex for numerical modeling of multibody system dynamics
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 161-174

    This work deals with numerical modeling of motion of the multibody systems consisting of rigid bodies with arbitrary masses and inertial properties. We consider both planar and spatial systems which may contain kinematic loops.

    The numerical modeling is fully automatic and its computational algorithm contains three principal steps. On step one a graph of the considered mechanical system is formed from the userinput data. This graph represents the hierarchical structure of the mechanical system. On step two the differential-algebraic equations of motion of the system are derived using the so-called Joint Coordinate Method. This method allows to minimize the redundancy and lower the number of the equations of motion and thus optimize the calculations. On step three the equations of motion are integrated numerically and the resulting laws of motion are presented via user interface or files.

    The aforementioned algorithm is implemented in the software complex that contains a computer algebra system, a graph library, a mechanical solver, a library of numerical methods and a user interface.

  8. Варшавский Л.Е.
    Итерационные методы декомпозиции при моделировании развития олигополистических рынков
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1237-1256

    Один из принципов формирования рыночной конкурентной среды состоит в создании условий для реализации экономическими агентами стратегий, оптимальных по Нэшу – Курно. При стандартном подходе к определению рыночных стратегий, оптимальных по Нэшу – Курно, экономические агенты должны обладать полной информацией о показателях и динамических характеристиках всех участников рынка. Что не соответствует действительности.

    В связи с этим для отыскания оптимальных по Нэшу – Курно решений в динамических моделях необходимо наличие координатора, обладающего полной информацией об участниках. Однако в случае большого числа участников игры, даже при наличии у координатора необходимой информации, появляются вычислительные трудности, связанные с необходимостью решения большого числа связанных (coupled) уравнений (в случае линейных динамических игр с квадратическим критерием — матричных уравнений Риккати).

    В связи с этим возникает необходимость в декомпозиции общей задачи определения оптимальных стратегий участников рынка на частные (локальные) задачи. Применительно к линейным динамическим играм с квадратическим критерием исследовались подходы, основанные на итерационной декомпозиции связанных матричных уравнений Риккати и решении локальных уравнений Риккати. В настоящей статье рассматривается более простой подход к итерационному определению равновесия по Нэшу – Курно в олигополии путем декомпозиции с использованием операционного исчисления (операторного метода).

    Предлагаемый подход основан на следующей процедуре. Виртуальный координатор, обладающий информацией о параметрах обратной функции спроса, формирует цены на перспективный период. Олигополисты при заданной фиксированной динамике цен определяют свои стратегии в соответствии с несколько измененным критерием оптимальности. Оптимальные объемы продукции олигополистов поступают к координатору, который на основе итерационного алгоритма корректирует динамику цены на предыдущем шаге.

    Предлагаемая процедура иллюстрируется на примере статической и динамической моделей рационального поведения участников олигополии, которые максимизируют чистую текущую стоимость (NPV).

    При использовании методов операционного исчисления (и, в частности, обратного Z-преобразования) найдены условия, при которых итерационная процедура приводит к равновесным уровням цены и объемов производства в случае линейных динамических игр как с квадратичными, так и с нелинейными (вогнутыми) критериями оптимизации.

    Рассмотренный подход использован применительно к примерам дуополии, триополии, дуополии на рынке с дифференцированным продуктом, дуополии с взаимодействующими олигополистами при линейной обратной функции спроса. Сопоставление результатов расчетов динамики цены и объемов производства олигополистов для рассмотренных примеров на основе связанных (coupled) уравнений матричных уравнений Риккати в Matlab, а также в соответствии с предложенным итерационным методом в широко доступной системе Excel показывает их практическую идентичность.

    Кроме того, применение предложенной итерационной процедуры проиллюстрировано на примере дуополии с нелинейной функцией спроса.

    Varshavsky L.E.
    Iterative decomposition methods in modelling the development of oligopolistic markets
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1237-1256

    One of the principles of forming a competitive market environment is to create conditions for economic agents to implement Nash – Cournot optimal strategies. With the standard approach to determining Nash – Cournot optimal market strategies, economic agents must have complete information about the indicators and dynamic characteristics of all market participants. Which is not true.

    In this regard, to find Nash – Cournot optimal solutions in dynamic models, it is necessary to have a coordinator who has complete information about the participants. However, in the case of a large number of game participants, even if the coordinator has the necessary information, computational difficulties arise associated with the need to solve a large number of coupled equations (in the case of linear dynamic games — Riccati matrix equations).

    In this regard, there is a need to decompose the general problem of determining optimal strategies for market participants into private (local) problems. Approaches based on the iterative decomposition of coupled matrix Riccati equations and the solution of local Riccati equations were studied for linear dynamic games with a quadratic criterion. This article considers a simpler approach to the iterative determination of the Nash – Cournot equilibrium in an oligopoly, by decomposition using operational calculus (operator method).

    The proposed approach is based on the following procedure. A virtual coordinator, which has information about the parameters of the inverse demand function, forms prices for the prospective period. Oligopolists, given fixed price dynamics, determine their strategies in accordance with a slightly modified optimality criterion. The optimal volumes of production of the oligopolists are sent to the coordinator, who, based on the iterative algorithm, adjusts the price dynamics at the previous step.

    The proposed procedure is illustrated by the example of a static and dynamic model of rational behavior of oligopoly participants who maximize the net present value (NPV). Using the methods of operational calculus (and in particular, the inverse Z-transformation), conditions are found under which the iterative procedure leads to equilibrium levels of price and production volumes in the case of linear dynamic games with both quadratic and nonlinear (concave) optimization criteria.

    The approach considered is used in relation to examples of duopoly, triopoly, duopoly on the market with a differentiated product, duopoly with interacting oligopolists with a linear inverse demand function. Comparison of the results of calculating the dynamics of price and production volumes of oligopolists for the considered examples based on coupled equations of the matrix Riccati equations in Matlab (in the table — Riccati), as well as in accordance with the proposed iterative method in the widely available Excel system shows their practical identity.

    In addition, the application of the proposed iterative procedure is illustrated by the example of a duopoly with a nonlinear demand function.

  9. Варшавский Л.Е.
    Использование методов теории управления для формирования рыночных структур
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 839-859

    В статье рассматриваются методы формирования рыночных структур при ориентации участников возникающих рынков на максимально возможные темпы роста, а также при ориентации их на максимизацию показателей экономической эффективности. Для первого случая разработан метод достижения желаемой структуры рынка, основанный на использовании принципов теории систем с переменной структурой. Для случая ориентации фирм на достижение максимума NPV рассматривается игровой подход к поддержанию конкурентной среды, основанный на эффективном методе расчета оптимальных по Нэшу–Курно и по Штакельбергу стратегий с помощью аппарата Z-преобразования.

    Varshavsky L.E.
    Control theory methods for creating market structures
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 839-859

    Control theory methods for creating market structures are discussed for two cases: when market participants are pursuing aims 1) of maximal growth and 2) of maximum economic efficiency of their firms. For the first case method based on variable structure systems principles is developed. For the second case dynamic game approach is proposed based on computation of Nash–Cournot and Stackelberg strategies with the help of Z-transform.

    Просмотров за год: 4. Цитирований: 4 (РИНЦ).
  10. Краснов Ф.В., Смазневич И.С., Баскакова Е.Н.
    Метод контрастного семплирования для предсказания библиографических ссылок
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1317-1336

    В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.

    Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.

    Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.

    Krasnov F.V., Smaznevich I.S., Baskakova E.N.
    Bibliographic link prediction using contrast resampling technique
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1317-1336

    The paper studies the problem of searching for fragments with missing bibliographic links in a scientific article using automatic binary classification. To train the model, we propose a new contrast resampling technique, the innovation of which is the consideration of the context of the link, taking into account the boundaries of the fragment, which mostly affects the probability of presence of a bibliographic links in it. The training set was formed of automatically labeled samples that are fragments of three sentences with class labels «without link» and «with link» that satisfy the requirement of contrast: samples of different classes are distanced in the source text. The feature space was built automatically based on the term occurrence statistics and was expanded by constructing additional features — entities (names, numbers, quotes and abbreviations) recognized in the text.

    A series of experiments was carried out on the archives of the scientific journals «Law enforcement review» (273 articles) and «Journal Infectology» (684 articles). The classification was carried out by the models Nearest Neighbors, RBF SVM, Random Forest, Multilayer Perceptron, with the selection of optimal hyperparameters for each classifier.

    Experiments have confirmed the hypothesis put forward. The highest accuracy was reached by the neural network classifier (95%), which is however not as fast as the linear one that showed also high accuracy with contrast resampling (91–94%). These values are superior to those reported for NER and Sentiment Analysis on comparable data. The high computational efficiency of the proposed method makes it possible to integrate it into applied systems and to process documents online.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.