Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Весовой векторный метод конечных элементов и его приложения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 71-86Математические модели многих естественных процессов описываются дифференциальными уравнениями с особенностями решения. Классические численные методы для нахождения приближенного решения таких задач оказываются неэффективными. В настоящей работе рассмотрена краевая задача для векторного волнового уравнения в двумерной L-образной области. Наличие входящего угла величиной $3\pi/2$ на границе расчетной области обусловливает сильную сингулярность задачи, то есть ее решение не принадлежит пространству Соболева $H^1$, в результате чего классические и специализированные численные методы имеют скорость сходимости ниже чем $O(h)$. Поэтому в работе введено специальное весовое множество вектор-функций. В этом множестве решение рассматриваемой краевой задачи определено как $R_ν$-обобщенное.
Для численного нахождения $R_ν$-обобщенного решения построен весовой векторный метод конечных элементов. Основным отличием этого метода является введение в базисные функции в качестве сомножителя специальной весовой функции в степени, определяемой свойствами решения исходной краевой задачи. Это позволило существенно повысить скорость сходимости приближенного решения к точному при измельчении конечноэлементной сетки. Кроме того, введенные базисные функции соленоидальны, что обеспечило точный учет условия соленоидальности искомого решения и предотвратило появление ложных численных решений.
Представлены результаты численного эксперимента для серии модельных задач различных типов: для задач, решение которых содержит только сингулярную составляющую, и для задач, решение которых содержит как сингулярную, так и регулярную составляющие. Результаты численного анализа показали, что при измельчении конечноэлементной сетки скорость сходимости построенного весового векторного метода конечных элементов составляет $O(h)$, что по порядку степени в полтора раза выше, чем в разработанных к настоящему времени специализированных методах решения рассматриваемой задачи: методе сингулярных дополнений и методе регуляризации. Другие особенности построенного метода — его алгоритмическая простота и естественность определения решения, что является преимуществом при проведении численных расчетов.
Ключевые слова: весовой векторный метод конечных элементов, весовые пространства, $R_ν$-обобщенное решение, краевые задачи с сингулярностью.
Weighthed vector finite element method and its applications
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 71-86Просмотров за год: 37.Mathematical models of many natural processes are described by partial differential equations with singular solutions. Classical numerical methods for determination of approximate solution to such problems are inefficient. In the present paper a boundary value problem for vector wave equation in L-shaped domain is considered. The presence of reentrant corner of size $3\pi/2$ on the boundary of computational domain leads to the strong singularity of the solution, i.e. it does not belong to the Sobolev space $H^1$ so classical and special numerical methods have a convergence rate less than $O(h)$. Therefore in the present paper a special weighted set of vector-functions is introduced. In this set the solution of considered boundary value problem is defined as $R_ν$-generalized one.
For numerical determination of the $R_ν$-generalized solution a weighted vector finite element method is constructed. The basic difference of this method is that the basis functions contain as a factor a special weight function in a degree depending on the properties of the solution of initial problem. This allows to significantly raise a convergence speed of approximate solution to the exact one when the mesh is refined. Moreover, introduced basis functions are solenoidal, therefore the solenoidal condition for the solution is taken into account precisely, so the spurious numerical solutions are prevented.
Results of numerical experiments are presented for series of different type model problems: some of them have a solution containing only singular component and some of them have a solution containing a singular and regular components. Results of numerical experiment showed that when a finite element mesh is refined a convergence rate of the constructed weighted vector finite element method is $O(h)$, that is more than one and a half times better in comparison with special methods developed for described problem, namely singular complement method and regularization method. Another features of constructed method are algorithmic simplicity and naturalness of the solution determination that is beneficial for numerical computations.
-
Численный метод решения двумерного уравнения переноса при моделировании ионосферы Земли на основе монотонизированной Z-схемы
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 43-58Целью работы является исследование конечно-разностной схемы второго порядка точности, которая создана на основе Z-схемы. Это исследование состоит в численном решении нескольких двумерных дифференциальных уравнений, моделирующих перенос несжимаемой среды.
Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направлении предполагается выполнение условия несжимаемости плазмы. По той же причине в продольном к магнитному полю направлении могут возникать достаточно высокие скорости тепло- и массопереноса.
Актуальной задачей при ионосферном моделировании является исследование плазменных неустойчивостей различных масштабов, которые возникают прежде всего в полярной и экваториальной областях. При этом среднемасштабные неоднородности, имеющие характерные размеры 1–50 км, создают условия для развития мелкомасштабных неустойчивостей. Последние приводят к явлению F-рассеяния, которое существенно влияет на точность работы спутниковых систем позиционирования, а также других космических и наземных радиоэлектронных систем.
Используемые для одновременного моделирования таких разномасштабных процессов разностные схемы должны иметь высокое разрешение. Кроме того, эти разностные схемы должны быть, с одной стороны, достаточно точными, а с другой стороны — монотонными. Причиной таких противоречивых требований является то, что неустойчивости усиливают погрешности разностных схем, особенно погрешности дисперсионного типа. Подобная раскачка погрешностей при численном решении обычно приводит к нефизическим результатам.
При численном решении трехмерных математических моделей ионосферной плазмы используется следующая схема расщепления по физическим процессам: первый шаг расщепления осуществляет продольный перенос, второй шаг расщепления осуществляет поперечный перенос. Исследуемая в работе конечно-разностная схема второго порядка точности приближенно решает уравнения поперечного пере- носа. Эта схема строится с помощью нелинейной процедуры монотонизации Z-схемы, которая является одной из схем второго порядка точности. При этой монотонизации используется нелинейная коррекция по так называемым «косым разностям». «Косые разности» содержат узлы расчетной сетки, относящиеся к разным слоям времени.
Исследования проводились для двух случаев. В первом случае компоненты вектора переноса были знакопостоянны, во втором — знакопеременны в области моделирования. Численно получены диссипативные и дисперсионные характеристики схемы для различных видов ограничивающих функций.
Результаты численных экспериментов позволяют сделать следующие выводы.
1. Для разрывного начального профиля лучшие свойства показал ограничитель SuperBee.
2. Для непрерывного начального профиля при больших пространственных шагах лучше ограничитель SuperBee, а при малых шагах лучше ограничитель Koren.
3. Для гладкого начального профиля лучшие результаты показал ограничитель Koren.
4. Гладкий ограничитель F показал результаты, аналогичные Koren.
5. Ограничители разного типа оставляют дисперсионные ошибки, при этом зависимости дисперсионных ошибок от параметров схемы имеют большую вариабельность и сложным образом зависят от параметров этой схемы.
6. Во всех расчетах численно подтверждена монотонность рассматриваемой разностной схемы. Для одномерного уравнения численно подтверждено свойство неувеличения вариации для всех указанных функций-ограничителей.
7. Построенная разностная схема при шагах по времени, не превышающих шаг Куранта, является монотонной и показывает хорошие характеристики точности для решений разных типов. При превышении шага Куранта схема остается устойчивой, но становится непригодной для задач неустойчивости, поскольку условия монотонности перестают в этом случае выполняться.
Ключевые слова: нелинейная конечно-разностная схема, Z-схема, математическое моделирование, численное моделирование, дифференциальное уравнение, уравнение переноса, ионосфера, неустойчивость Рэлея–Тейлора, несжимаемая плазма, неоднородность плазмы, неустойчивость плазмы.
A numerical method for solving two-dimensional convection equation based on the monotonized Z-scheme for Earth ionosphere simulation
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 43-58The purpose of the paper is a research of a 2nd order finite difference scheme based on the Z-scheme. This research is the numerical solution of several two-dimensional differential equations simulated the incompressible medium convection.
One of real tasks for similar equations solution is the numerical simulating of strongly non-stationary midscale processes in the Earth ionosphere. Because convection processes in ionospheric plasma are controlled by magnetic field, the plasma incompressibility condition is supposed across the magnetic field. For the same reason, there can be rather high velocities of heat and mass convection along the magnetic field.
Ionospheric simulation relevant task is the research of plasma instability of various scales which started in polar and equatorial regions first of all. At the same time the mid-scale irregularities having characteristic sizes 1–50 km create conditions for development of the small-scale instabilities. The last lead to the F-spread phenomenon which significantly influences the accuracy of positioning satellite systems work and also other space and ground-based radio-electronic systems.
The difference schemes used for simultaneous simulating of such multi-scale processes must to have high resolution. Besides, these difference schemes must to be high resolution on the one hand and monotonic on the other hand. The fact that instabilities strengthen errors of difference schemes, especially they strengthen errors of dispersion type is the reason of such contradictory requirements. The similar swing of errors usually results to nonphysical results at the numerical solution.
At the numerical solution of three-dimensional mathematical models of ionospheric plasma are used the following scheme of splitting on physical processes: the first step of splitting carries out convection along, the second step of splitting carries out convection across. The 2nd order finite difference scheme investigated in the paper solves approximately convection across equations. This scheme is constructed by a monotonized nonlinear procedure on base of the Z-scheme which is one of 2nd order schemes. At this monotonized procedure a nonlinear correction with so-called “oblique differences” is used. “Oblique differences” contain the grid nodes relating to different layers of time.
The researches were conducted for two cases. In the simulating field components of the convection vector had: 1) the constant sign; 2) the variable sign. Dissipative and dispersive characteristics of the scheme for different types of the limiting functions are in number received.
The results of the numerical experiments allow to draw the following conclusions.
1. For the discontinuous initial profile the best properties were shown by the SuperBee limiter.
2. For the continuous initial profile with the big spatial steps the SuperBee limiter is better, and at the small steps the Koren limiter is better.
3. For the smooth initial profile the best results were shown by the Koren limiter.
4. The smooth F limiter showed the results similar to Koren limiter.
5. Limiters of different type leave dispersive errors, at the same time dependences of dispersive errors on the scheme parameters have big variability and depend on the scheme parameters difficulty.
6. The monotony of the considered differential scheme is in number confirmed in all calculations. The property of variation non-increase for all specified functions limiters is in number confirmed for the onedimensional equation.
7. The constructed differential scheme at the steps on time which are not exceeding the Courant's step is monotonous and shows good exactness characteristics for different types solutions. At excess of the Courant's step the scheme remains steady, but becomes unsuitable for instability problems as monotony conditions not satisfied in this case.
-
Метод зеркального спуска для условных задач оптимизации с большими значениями норм субградиентов функциональных ограничений
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 301-317В работе рассмотрена задача минимизации выпуклого и, вообще говоря, негладкого функционала $f$ при наличии липшицевого неположительного выпуклого негладкого функционального ограничения $g$. При этом обоснованы оценки скорости сходимости методов адаптивного зеркального спуска также и для случая квазивыпуклого целевого функционала в случае выпуклого функционального ограничения. Предложен также метод и для задачи минимизации квазивыпуклого целевого функционала с квазивыпуклым неположительным функционалом ограничения. В работе предложен специальный подход к выбору шагов и количества итераций в алгоритме зеркального спуска для рассматриваемого класса задач. В случае когда значения норм (суб)градиентов функциональных ограничений достаточно велики, предложенный подход к выбору шагов и остановке метода может ускорить работу метода по сравнению с его аналогами. В работе приведены численные эксперименты, демонстрирующие преимущества использования таких методов. Также показано, что методы применимы к целевым функционалам различных уровней гладкости. В частности, рассмотрен класс гёльдеровых целевых функционалов. На базе техники рестартов для рассмотренного варианта метода зеркального спуска был предложен оптимальный метод решения задач оптимизации с сильно выпуклыми целевыми функционалами. Получены оценки скорости сходимости рассмотренных алгоритмов для выделенных классов оптимизационных задач. Доказанные оценки демонстрируют оптимальность рассматриваемых методов с точки зрения теории нижних оракульных оценок.
Ключевые слова: негладкая условная оптимизация, квазивыпуклый функционал, адаптивный зеркальный спуск, уровень гладкости, гёльдеров целевой функционал, оптимальный метод.
Mirror descent for constrained optimization problems with large subgradient values of functional constraints
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 301-317The paper is devoted to the problem of minimization of the non-smooth functional $f$ with a non-positive non-smooth Lipschitz-continuous functional constraint. We consider the formulation of the problem in the case of quasi-convex functionals. We propose new strategies of step-sizes and adaptive stopping rules in Mirror Descent for the considered class of problems. It is shown that the methods are applicable to the objective functionals of various levels of smoothness. Applying a special restart technique to the considered version of Mirror Descent there was proposed an optimal method for optimization problems with strongly convex objective functionals. Estimates of the rate of convergence for the considered methods are obtained depending on the level of smoothness of the objective functional. These estimates indicate the optimality of the considered methods from the point of view of the theory of lower oracle bounds. In particular, the optimality of our approach for Höldercontinuous quasi-convex (sub)differentiable objective functionals is proved. In addition, the case of a quasiconvex objective functional and functional constraint was considered. In this paper, we consider the problem of minimizing a non-smooth functional $f$ in the presence of a Lipschitz-continuous non-positive non-smooth functional constraint $g$, and the problem statement in the cases of quasi-convex and strongly (quasi-)convex functionals is considered separately. The paper presents numerical experiments demonstrating the advantages of using the considered methods.
-
Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.
Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.
Ключевые слова: модель расчета матрицы корреспонденций, энтропийно-линейное программирование, метод Синхорна, метод ускоренного Синхорна.
Calibration of model parameters for calculating correspondence matrix for Moscow
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 961-978In this paper, we consider the problem of restoring the correspondence matrix based on the observations of real correspondences in Moscow. Following the conventional approach [Gasnikov et al., 2013], the transport network is considered as a directed graph whose edges correspond to road sections and the graph vertices correspond to areas that the traffic participants leave or enter. The number of city residents is considered constant. The problem of restoring the correspondence matrix is to calculate all the correspondence from the $i$ area to the $j$ area.
To restore the matrix, we propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. In our work, which is based on the work [Wilson, 1978], we describe the evolutionary justification of the entropy model and the main idea of the transition to solving the problem of entropy-linear programming (ELP) in calculating the correspondence matrix. To solve the ELP problem, it is proposed to pass to the dual problem. In this paper, we describe several numerical optimization methods for solving this problem: the Sinkhorn method and the Accelerated Sinkhorn method. We provide numerical experiments for the following variants of cost functions: a linear cost function and a superposition of the power and logarithmic cost functions. In these functions, the cost is a combination of average time and distance between areas, which depends on the parameters. The correspondence matrix is calculated for multiple sets of parameters and then we calculate the quality of the restored matrix relative to the known correspondence matrix.
We assume that the noise in the restored correspondence matrix is Gaussian, as a result, we use the standard deviation as a quality metric. The article provides an overview of gradient-free optimization methods for solving non-convex problems. Since the number of parameters of the cost function is small, we use the grid search method to find the optimal parameters of the cost function. Thus, the correspondence matrix calculated for each set of parameters and then the quality of the restored matrix is evaluated relative to the known correspondence matrix. Further, according to the minimum residual value for each cost function, we determine for which cost function and at what parameter values the restored matrix best describes real correspondence.
-
Об устойчивости гравитационной системы многих тел
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.
On the stability of the gravitational system of many bodies
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 487-511In this paper, a gravitational system is understood as a set of point bodies that interact according to Newton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of a gravitational system of general position is discussed by direct computational experiment. A gravitational system of general position is a system in which the masses, initial positions, and velocities of bodies are chosen randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large time intervals has been developed for the computational experiment. The proposed method allowed, on the one hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to use standard methods for the numerical solution of systems of differential equations of low approximation order. Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is discontinuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. The general conclusion of a series of computational experiments has shown that gravitational systems of general position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the proposed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computational experiments based on analytical methods, as well as direct numerical methods of high-order approximation (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion years or more. Due to the limitations on the available computational resources, the stability of the dynamics of the planets of the solar system within the framework of the proposed method was confirmed for a period of ten million years. With the help of a computational experiment, one of the possible scenarios for the disintegration of the solar systems is also considered.
-
Оценка вероятности спонтанного синтеза вычислительных структур применительно к реализации параллельной обработки информации
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 677-696Мы рассматриваем модель спонтанного формирования вычислительной структуры в мозге человека для решения заданного класса задач в процессе выполнения серии однотипных заданий. Модель основана на специальном определении числовой меры сложности алгоритма решения. Эта мера обладает информационным свойством: сложность вычислительной структуры, состоящей из двух независимых структур, равна сумме сложностей этих структур. Тогда вероятность спонтанного возникновения структуры экспоненциально зависит от сложности структуры. Коэффициент при экспоненте требует экспериментального определения для каждого типа задач. Он может зависеть от формы предъявления исходных данных и от процедуры выдачи результата. Этот метод оценки применен к результатам серии экспериментов, в которых определялась стратегия решения человеком серии однотипных задач с растущим числом исходных данных. Эти эксперименты были описаны в ранее изданных работах. Рассматривались две основные стратегии: последовательное выполнение вычислительного алгоритма или использование параллельных вычислений в тех задачах, где это эффективно. Эти стратегии различаются схемами проведения вычислений. Используя оценку сложности схем, можно по эмпирической вероятности одной из стратегий рассчитать вероятность другой. Проведенные вычисления показали хорошее совпадение расчетной и эмпирической вероятности. Это подтверждает гипотезу о спонтанном формировании структур, решающих задачу, в процессе начальной тренировки человека. Работа содержит краткое описание экспериментов, подробные вычислительные схемы и строгое определение меры сложности вычислительных структур и вывод зависимости вероятности формирования структуры от ее сложности.
Ключевые слова: алгоритм, вычислительная структура, итеративная структура, сложность, вероятность, инженерная психология, статистика.
Estimation of the probability of spontaneous synthesis of computational structures in relation to the implementation of parallel information processing
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 677-696We consider a model of spontaneous formation of a computational structure in the human brain for solving a given class of tasks in the process of performing a series of similar tasks. The model is based on a special definition of a numerical measure of the complexity of the solution algorithm. This measure has an informational property: the complexity of a computational structure consisting of two independent structures is equal to the sum of the complexities of these structures. Then the probability of spontaneous occurrence of the structure depends exponentially on the complexity of the structure. The exponential coefficient requires experimental determination for each type of problem. It may depend on the form of presentation of the source data and the procedure for issuing the result. This estimation method was applied to the results of a series of experiments that determined the strategy for solving a series of similar problems with a growing number of initial data. These experiments were described in previously published papers. Two main strategies were considered: sequential execution of the computational algorithm, or the use of parallel computing in those tasks where it is effective. These strategies differ in how calculations are performed. Using an estimate of the complexity of schemes, you can use the empirical probability of one of the strategies to calculate the probability of the other. The calculations performed showed a good match between the calculated and empirical probabilities. This confirms the hypothesis about the spontaneous formation of structures that solve the problem during the initial training of a person. The paper contains a brief description of experiments, detailed computational schemes and a strict definition of the complexity measure of computational structures and the conclusion of the dependence of the probability of structure formation on its complexity.
-
Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.
Ключевые слова: нелинейное уравнение параболического типа, уравнение теплопроводности, метод нулевого поля, метод коллокаций, радиальные базисные функции, метод граничных элементов.
Solution to a two-dimensional nonlinear heat equation using null field method
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.
-
Идентификация парадокса Браесса в модели стабильной динамики
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 35-51В работе исследуется поиск неэффективных ребер в модели стабильной динамики Нестрова–де Пальмы (2003). Для этой цели мы доказываем несколько общих теорем о свойствах равновесия, в том числе о том, что условие равенства стоимостей для всех используемых маршрутов может быть распространено на все пути, задействующие ребра из равновесных маршрутов. В работе показывается, что стандартная постановка задачи о поиске ребер, удаление которых приводит к уменьшению стоимости проезда для всех участников, не имеет практического смысла, так как одно и то же ребро может быть как эффективным, так и неэффективным (в зависимости от загрузки сети). В работе мы вводим понятие неэффективного ребра, опираясь на чувствительность суммарных издержек водителей к издержкам на ребре. В работе приводятся алгоритм поиска неэффективных ребер и результаты численных экспериментов для транспортной сети города Анахайм.
Ключевые слова: транспортное моделирование, парадокс Браесса.
Detecting Braess paradox in the stable dynamic model
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 35-51The work investigates the search for inefficient edges in the model of stable dynamics by Nestrov – de Palma (2003). For this purpose, we prove several general theorems about equilibrium properties, including the condition of equal costs for all used routes that can be extended to all paths involving edges from equilibrium routes. The study demonstrates that the standard problem formulation of finding edges whose removal reduces the cost of travel for all participants has no practical significance because the same edge can be both efficient and inefficient depending on the network’s load. In the work, we introduce the concept of an inefficient edge based on the sensitivity of total driver costs to the costs on the edge. The paper provides an algorithm for finding inefficient edges and presents the results of numerical experiments for the transportation network of the city of Anaheim.
Keywords: transportation modeling, Braess paradox. -
Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.
Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.
-
Модель мантийной конвекции в зоне полного цикла субдукции
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1385-1398Разработана численная 2D-модель погружения холодной океанической плиты в толщу верхней мантии Земли, где этапу начального погружения плиты предшествует установление режима термогравитационной конвекции мантийного вещества. Модельным приближением мантии выступает двумерный образ несжимаемой ньютоновской квазижидкости в декартовой системе координат, где вследствие высокой вязкости среды уравнения мантийной конвекции принимаются в стоксовском приближении. Полагается, что вместе с плитой в верхние слои мантии поступает просочившаяся сюда морская вода. С глубиной рост давления и температуры приводит к определенным потерям ее легких фракций и флюидов, потерям воды и газов водосодержащих минералов плиты, перестройке их кристаллической решетки и, как следствие, фазовым превращениям. Эти потери обусловливают рост плотности плиты и неравномерность распределения вдоль плиты напряжений (начальные участки плиты оказываются менее плотными), что в последствии вместе с воздействием на плиту мантийных течений вызывает ее фрагментацию. Рассматривается состояние мантийной конвекции, когда плита и ее отдельные фрагменты опустились на подошву верхней мантии. Разработаны вычислительные схемы решения уравнений модели. Расчеты мантийной конвекции выполнены в терминах приближения Стокса для завихренности и функции тока, а для расчетов состояния и погружения плиты использован SPH. Выполнен ряд вычислительных экспериментов. Показано, что вследствие воздействия на плиту мантийной конвекции и с развитием вдоль плиты неоднородного поля напряжений происходит ее фрагментация. Следуя уравнениям модели, оценивается время финальной стадии субдукции, т. е. времени выхода всей океанической плиты на дно верхней мантии. В геодинамике этот процесс определяется коллизией плит, следует непосредственно за субдукцией и рассматривается обычно в качестве конечного этапа цикла Уилсона (т. е. цикла развития складчатых поясов).
Ключевые слова: мантийная конвекция, субдукция, слэб, термогравитационный режим, вычислительная схема, гидродинамика сглаженных частиц.
Model of mantle convection in a zone of a complete subduction cycle
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1385-1398A 2D numerical model of the immersion of a cold oceanic plate into the thickness of the Earth’s upper mantle has been developed, where the stage of the initial immersion of the plate is preceded by the establishment of a regime of thermogravitational convection of the mantle substance. The model approximation of the mantle is a two-dimensional image of an incompressible Newtonian quasi-liquid in a Cartesian coordinate system, where, due to the high viscosity of the medium, the equations of mantle convection are accepted in the Stokes approximation. It is assumed that seawater that has leaked here enters the first horizons of the mantle together with the plate. With depth, the increase in pressure and temperature leads to certain losses of its light fractions and fluids, losses of water and gases of water-containing minerals of the plate, restructuring of their crystal lattice and, as a consequence, phase transformations. These losses cause an increase in the plate density and an uneven distribution of stresses along the plate (the initial sections of the plate are denser), which subsequently, together with the effect of mantle currents on the plate, causes its fragmentation. The state of mantle convection is considered when the plate and its individual fragments have descended to the bottom of the upper mantle. Computational schemes for solving the model equations have been developed. Mantle convection calculations are performed in terms of the Stokes approximation for vorticity and the stream function, and SPH is used to calculate the state and subsidence of the plate. A number of computational experiments have been performed. It is shown that fragmentation of the plate occurs due to the effect of mantle convection on the plate and the development of inhomogeneous stress fields along the plate. Following the equations of the model, the time of the final stage of subduction is estimated, i.e. the time of the entire oceanic plate reaching the bottom of the upper mantle. In geodynamics, this process is determined by the collision of plates that immediately follows subduction and is usually considered as the final stage of the Wilson cycle (i. e., the cycle of development of folded belts).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





