Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Идентификация парадокса Браесса в модели стабильной динамики
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 35-51В работе исследуется поиск неэффективных ребер в модели стабильной динамики Нестрова–де Пальмы (2003). Для этой цели мы доказываем несколько общих теорем о свойствах равновесия, в том числе о том, что условие равенства стоимостей для всех используемых маршрутов может быть распространено на все пути, задействующие ребра из равновесных маршрутов. В работе показывается, что стандартная постановка задачи о поиске ребер, удаление которых приводит к уменьшению стоимости проезда для всех участников, не имеет практического смысла, так как одно и то же ребро может быть как эффективным, так и неэффективным (в зависимости от загрузки сети). В работе мы вводим понятие неэффективного ребра, опираясь на чувствительность суммарных издержек водителей к издержкам на ребре. В работе приводятся алгоритм поиска неэффективных ребер и результаты численных экспериментов для транспортной сети города Анахайм.
Ключевые слова: транспортное моделирование, парадокс Браесса.
Detecting Braess paradox in the stable dynamic model
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 35-51The work investigates the search for inefficient edges in the model of stable dynamics by Nestrov – de Palma (2003). For this purpose, we prove several general theorems about equilibrium properties, including the condition of equal costs for all used routes that can be extended to all paths involving edges from equilibrium routes. The study demonstrates that the standard problem formulation of finding edges whose removal reduces the cost of travel for all participants has no practical significance because the same edge can be both efficient and inefficient depending on the network’s load. In the work, we introduce the concept of an inefficient edge based on the sensitivity of total driver costs to the costs on the edge. The paper provides an algorithm for finding inefficient edges and presents the results of numerical experiments for the transportation network of the city of Anaheim.
Keywords: transportation modeling, Braess paradox. -
Сверточные нейронные сети семейства YOLO для мобильных систем компьютерного зрения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 615-631Работа посвящена анализу известных классов моделей сверточных нейронных сетей и исследованию выбранных из них перспективных моделей для детектирования летающих объектов на изображениях. Под детектированием объектов (англ. — Object Detection) здесь понимаются обнаружение, локализация в пространстве и классификация летающих объектов. Комплексное исследование выбранных перспективных моделей сверточных нейронных сетей проводится с целью выявления наиболее эффективных из них для создания мобильных систем компьютерного зрения реального времени. Показано, что наиболее приемлемыми для детектирования летающих объектов на изображениях с учетом сформулированных требований к мобильным системам компьютерного зрения реального времени и, соответственно, к лежащим в их основе моделям сверточных нейронных сетей являются модели семейства YOLO, причем наиболее перспективными следует считать пять моделей из этого семейства: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 и YOLOv7-Tiny. Для обучения, валидации и комплексного исследования этих моделей разработан соответствующий набор данных. Каждое размеченное изображение из набора данных включает от одного до нескольких летающих объектов четырех классов: «птица», «беспилотный летательный аппарат самолетного типа», «беспилотный летательный аппарат вертолетного типа» и «неизвестный объект» (объекты в воздушном пространстве, не входящие в первые три класса). Исследования показали, что все модели сверточных нейронных сетей по скорости детектирования объектов на изображении (по скорости вычисления модели) значительно превышают заданное пороговое значение, однако только модели YOLOv4-CSP и YOLOv7, причем только частично, удовлетворяют требованию по точности детектирования (классификации) летающих объектов. Наиболее сложным для детектирования классом объектов является класс «птица». При этом выявлено, что наиболее эффективной по точности классификации является модель YOLOv7, модель YOLOv4-CSP на втором месте. Обе модели рекомендованы к использованию в составе мобильной системы компьютерного зрения реального времени при условии увеличения в созданном наборе данных числа изображений с объектами класса «птица» и дообучения этих моделей с тем, чтобы они удовлетворяли требованию по точности детектирования летающих объектов каждого из четырех классов.
Ключевые слова: детектирование летающих объектов на изображениях, сверточная нейронная сеть, YOLO, мобильная система компьютерного зрения.
Convolutional neural networks of YOLO family for mobile computer vision systems
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 615-631The work analyzes known classes of convolutional neural network models and studies selected from them promising models for detecting flying objects in images. Object detection here refers to the detection, localization in space and classification of flying objects. The work conducts a comprehensive study of selected promising convolutional neural network models in order to identify the most effective ones from them for creating mobile real-time computer vision systems. It is shown that the most suitable models for detecting flying objects in images, taking into account the formulated requirements for mobile real-time computer vision systems, are models of the YOLO family, and five models from this family should be considered: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 and YOLOv7-Tiny. An appropriate dataset has been developed for training, validation and comprehensive research of these models. Each labeled image of the dataset includes from one to several flying objects of four classes: “bird”, “aircraft-type unmanned aerial vehicle”, “helicopter-type unmanned aerial vehicle”, and “unknown object” (objects in airspace not included in the first three classes). Research has shown that all convolutional neural network models exceed the specified threshold value by the speed of detecting objects in the image, however, only the YOLOv4-CSP and YOLOv7 models partially satisfy the requirements of the accuracy of detection of flying objects. It was shown that most difficult object class to detect is the “bird” class. At the same time, it was revealed that the most effective model is YOLOv7, the YOLOv4-CSP model is in second place. Both models are recommended for use as part of a mobile real-time computer vision system with condition of additional training of these models on increased number of images with objects of the “bird” class so that they satisfy the requirement for the accuracy of detecting flying objects of each four classes.
-
Исследование традиционных и ИИ-моделей в задаче подавления интермодуляционных продуктов второго порядка
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1569-1578В данной работе рассматриваются нейросетевые модели и полиномиальные модели на основе полинома Чебышёва для компенсации помех. Показано, что нейросетевая модель обеспечивает компенсацию паразитных помех без необходимости настройки параметров, в отличие от полиномиальной модели, где требуется подбор оптимальных задержек. Для обеих архитектур использован метод L-BFGS, который достигает уровня компенсации, сопоставимого с решением LS для полиномиальной модели, с результатом NMSE = −23,59 дБ и требует менее 2000 итераций, что подтверждает его высокую эффективность. Также благодаря высокой обобщающей способности нейросетевых моделей метод первого порядка для нейросетевых архитектур демонстрирует более быструю сходимость по сравнению с полиномиальной моделью. За 20 000 итераций нейросетевая модель достигает прироста уровня компенсации на 0,44 дБ по сравнению с полиномом. В отличие от этого полиномиальная модель может достичь высокого уровня компенсации только при оптимальной настройке параметров методов первого порядка, что подчеркивает одно из ключевых преимуществ нейросетевых моделей.
Ключевые слова: интермодуляционные помехи второго порядка, адаптивный фильтр, нейросетевые модели, полиномы Чебышёва.
A study of traditional and AI-based models for second-order intermodulation product suppression
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1569-1578This paper investigates neural network models and polynomial models based on Chebyshev polynomials for interference compensation. It is shown that the neural network model provides compensation for parasitic interference without the need for parameter tuning, unlike the polynomial model, which requires the selection of optimal delays. The L-BFGS method is applied to both architectures, achieving a compensation level comparable to the LS solution for the polynomial model, with an NMSE result of −23.59 dB and requiring fewer than 2000 iterations, confirming its high efficiency. Additionally, due to the strong generalization ability of neural network architectures, the first-order method for neural networks demonstrates faster convergence compared to the polynomial model. In 20 000 iterations, the neural network model achieves a 0.44 dB improvement in compensation level compared to the polynomial model. In contrast, the polynomial model can only achieve high compensation levels with optimal first-order method parameter tuning, highlighting one of the key advantages of neural network models.
-
Development of advanced intrusion detection approach using machine and ensemble learning for industrial internet of things networks
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 799-827The Industrial Internet of Things (IIoT) networks plays a significant role in enhancing industrial automation systems by connecting industrial devices for real time data monitoring and predictive maintenance. However, this connectivity introduces new vulnerabilities which demand the development of advanced intrusion detection systems. The nuclear facilities are considered one of the closest examples of critical infrastructures that suffer from high vulnerability through the connectivity of IIoT networks. This paper develops a robust intrusion detection approach using machine and ensemble learning algorithms specifically determined for IIoT networks. This approach can achieve optimal performance with low time complexity suitable for real-time IIoT networks. For each algorithm, Grid Search is determined to fine-tune the hyperparameters for optimizing the performance while ensuring time computational efficiency. The proposed approach is investigated on recent IIoT intrusion detection datasets, WUSTL-IIOT-2021 and Edge-IIoT-2022 to cover a wider range of attacks with high precision and minimum false alarms. The study provides the effectiveness of ten machine and ensemble learning models on selected features of the datasets. Synthetic Minority Over-sampling Technique (SMOTE)-based multi-class balancing is used to manipulate dataset imbalances. The ensemble voting classifier is used to combine the best models with the best hyperparameters for raising their advantages to improve the performance with the least time complexity. The machine and ensemble learning algorithms are evaluated based on accuracy, precision, recall, F1 Score, and time complexity. This evaluation can discriminate the most suitable candidates for further optimization. The proposed approach is called the XCL approach that is based on Extreme Gradient Boosting (XGBoost), CatBoost (Categorical Boosting), and Light Gradient- Boosting Machine (LightGBM). It achieves high accuracy, lower false positive rate, and efficient time complexity. The results refer to the importance of ensemble strategies, algorithm selection, and hyperparameter optimization in enhancing the performance to detect the different intrusions across the IIoT datasets over the other models. The developed approach produced a higher accuracy of 99.99% on the WUSTL-IIOT-2021 dataset and 100% on the Edge-IIoTset dataset. Our experimental evaluations have been extended to the CIC-IDS-2017 dataset. These additional evaluations not only highlight the applicability of the XCL approach on a wide spectrum of intrusion detection scenarios but also confirm its scalability and effectiveness in real-world complex network environments.
Ключевые слова: machine learning, intrusion detection systems, cybersecurity, industrial internet of things, ensemble learning.
Development of advanced intrusion detection approach using machine and ensemble learning for industrial internet of things networks
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 799-827The Industrial Internet of Things (IIoT) networks plays a significant role in enhancing industrial automation systems by connecting industrial devices for real time data monitoring and predictive maintenance. However, this connectivity introduces new vulnerabilities which demand the development of advanced intrusion detection systems. The nuclear facilities are considered one of the closest examples of critical infrastructures that suffer from high vulnerability through the connectivity of IIoT networks. This paper develops a robust intrusion detection approach using machine and ensemble learning algorithms specifically determined for IIoT networks. This approach can achieve optimal performance with low time complexity suitable for real-time IIoT networks. For each algorithm, Grid Search is determined to fine-tune the hyperparameters for optimizing the performance while ensuring time computational efficiency. The proposed approach is investigated on recent IIoT intrusion detection datasets, WUSTL-IIOT-2021 and Edge-IIoT-2022 to cover a wider range of attacks with high precision and minimum false alarms. The study provides the effectiveness of ten machine and ensemble learning models on selected features of the datasets. Synthetic Minority Over-sampling Technique (SMOTE)-based multi-class balancing is used to manipulate dataset imbalances. The ensemble voting classifier is used to combine the best models with the best hyperparameters for raising their advantages to improve the performance with the least time complexity. The machine and ensemble learning algorithms are evaluated based on accuracy, precision, recall, F1 Score, and time complexity. This evaluation can discriminate the most suitable candidates for further optimization. The proposed approach is called the XCL approach that is based on Extreme Gradient Boosting (XGBoost), CatBoost (Categorical Boosting), and Light Gradient- Boosting Machine (LightGBM). It achieves high accuracy, lower false positive rate, and efficient time complexity. The results refer to the importance of ensemble strategies, algorithm selection, and hyperparameter optimization in enhancing the performance to detect the different intrusions across the IIoT datasets over the other models. The developed approach produced a higher accuracy of 99.99% on the WUSTL-IIOT-2021 dataset and 100% on the Edge-IIoTset dataset. Our experimental evaluations have been extended to the CIC-IDS-2017 dataset. These additional evaluations not only highlight the applicability of the XCL approach on a wide spectrum of intrusion detection scenarios but also confirm its scalability and effectiveness in real-world complex network environments.
-
Численное моделирование охлаждения емкостей для десублимации паров
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 383-388Представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом, подаваемым к ним по сети трубопроводов. Приведены результаты расчетов процесса охлаждения двух приемных емкостей в блоке из четырех. Представлена картина течения охлаждающего воздуха в сети трубопроводов.
Numerical simulation of cooling tanks for vapor desublimation processes
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 383-388Просмотров за год: 2. Цитирований: 6 (РИНЦ).The paper presents a mathematical model to be used for design of cooling tanks for vapor desublimation. Results of calculations for the process of cooling of two tanks in a block of four are presented. Chart of the cooling air flow in the piping network is presented.
-
Исследование интегральных характеристик перекрестков при помощи микроскопических моделей транспортных потоков
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 523-534Рассматривается проблема применимости микроскопического моделирования транспортных потоков к анализу достаточно больших фрагментов сетей на примере модели дискретного потока с безопасной дистанцией. Вводится понятие интегральных характеристик перекрестков и предлагается методика получения интегральных характеристик на основе данных численных экспериментов по моделированию потоков на заданном перекрестке. Методика применяется к кольцевому коммутатору с Т-образными перекрестками, анализируются полученные характеристики.
Ключевые слова: транспортные потоки, коммутаторы, микроскопические модели транспортных потоков, моделировение перекрестков.
Interchange integral characteristics study via microscopic traffic flow models
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 523-534Просмотров за год: 4. Цитирований: 7 (РИНЦ).The problem of application of miscroscopic traffic models for the analysis of large network segments is discussed with an example of discrete flow with safe distance. A concept of integral charasteristics of network segments is introduced, a method for obtaining such characteristics via microscopic traffic flow models is presented. Said method is applied to a circular unidirectional interchange, obtained characteristics analysed.
-
Моделирование свойств конструкционного композитного материала, армированного углеродными нанотрубками, с использованием перцептронных комплексов
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 253-262Использование алгоритмов, основанных на нейронных сетях, может оказаться неэффективным при малых объемах экспериментальных данных. Авторы статьи рассматривают решение данной проблемы на примере моделирования свойств керамического композита, армированного углеродными нанотрубками, с помощью перцептронного комплекса. Такой подход позволил получить математическое описание объекта исследования при минимальном объеме и неполноте исходной информации, полученной в ходе экспериментов (объем необходимой экспериментальной выборки уменьшился в 2–3.3 раза). В статье рассмотрены различные варианты структур перцептронных комплексов. Выявлено, что наиболее подходящей структурой обладает перцептронный комплекс с проскоком двух входных переменных. Относительная ошибка составила всего 6%. Выбранный перцептронный комплекс показал свою эффективность для предсказания свойств керамического композита. Относительные ошибки по выходным компонентам составили 0.3%, 4.2%, 0.4%, 2.9% и 11.8%.
Ключевые слова: нейронная сеть, перцептронный комплекс, математическая модель, моделирование, керамический композит, углеродные нанотрубки, прочность на изгиб.
Simulation of properties of composite materials reinforced by carbon nanotubes using perceptron complexes
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 253-262Просмотров за год: 2. Цитирований: 1 (РИНЦ).Use of algorithms based on neural networks can be inefficient for small amounts of experimental data. Authors consider a solution of this problem in the context of modelling of properties of ceramic composite materials reinforced with carbon nanotubes using perceptron complex. This approach allowed us to obtain a mathematical description of the object of study with a minimal amount of input data (the amount of necessary experimental samples decreased 2–3.3 times). Authors considered different versions of perceptron complex structures. They found that the most appropriate structure has perceptron complex with breakthrough of two input variables. The relative error was only 6%. The selected perceptron complex was shown to be effective for predicting the properties of ceramic composites. The relative errors for output components were 0.3%, 4.2%, 0.4%, 2.9%, and 11.8%.
-
Метод построения прогнозной нейросетевой модели временного ряда
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 737-756В данной статье рассматривается метод построения прогнозной нейросетевой модели временного ряда, основанный на определении состава входных переменных, построения обучающей выборки и самого обучения с использованием метода обратного распространения ошибки. Традиционные методы построения прогнозных моделей временного ряда (авторегрессионной модели, модели скользящего среднего или модели авторегрессии – скользящего среднего) позволяют аппроксимировать временной ряд линейной зависимостью текущего значения выходной переменной от некоторого количества ее предыдущих значений. Такое ограничение, как линейность зависимости, приводит к значительным ошибкам при прогнозировании.
Технологии интеллектуального анализа с применением нейросетевого моделирования позволяют аппроксимировать временной ряд нелинейной зависимостью. Причем процесс построения нейросетевой модели (определение состава входных переменных, числа слоев и количества нейронов в слоях, выбор функций активации нейронов, определение оптимальных значений весов связей нейронов) позволяет получить прогнозную модель в виде аналитической нелинейной зависимости.
Одним из ключевых моментов при построении нейросетевых моделей в различных прикладных областях, влияющих на ее адекватность, является определение состава ее входных переменных. Состав входных переменных традиционно выбирается из некоторых физических соображений или методом подбора. Для задачи определения состава входных переменных прогнозной нейросетевой модели временного ряда предлагается использовать особенности поведения автокорреляционной и частной автокорреляционной функций.
В работе предлагается метод определения состава входных переменных нейросетевых моделей для стационарных и нестационарных временных рядов, базирующийся на построении и анализе автокорреляционных функций. На основе предложенного метода разработаны алгоритм и программа в среде программирования Python, определяющая состав входных переменных прогнозной нейросетевой модели — персептрона, а также строящая саму модель. Осуществлена экспериментальная апробация предложенного метода на примере построения прогнозной нейросетевой модели временного ряда, отражающего потребление электроэнергии в разных регионах США, открыто опубликованной компанией PJM Interconnection LLC (PJM) — региональной сетевой организацией в Соединенных Штатах. Данный временной ряд является нестационарным и характеризуется наличием как тренда, так и сезонности. Прогнозирование очередных значений временного ряда на ос- нове предыдущих значений и построенной нейросетевой модели показало высокую точность аппроксимации, что доказывает эффективность предлагаемого метода.
Ключевые слова: временной ряд, прогнозирование, нейросетевая модель, персептрон, тренд, сезонность, стационарный ряд, нестационарный ряд, автокорреляционная функция, частная автокорреляционная функция, точность аппроксимации.
A method of constructing a predictive neural network model of a time series
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 737-756This article studies a method of constructing a predictive neural network model of a time series based on determining the composition of input variables, constructing a training sample and training itself using the back propagation method. Traditional methods of constructing predictive models of the time series are: the autoregressive model, the moving average model or the autoregressive model — the moving average allows us to approximate the time series by a linear dependence of the current value of the output variable on a number of its previous values. Such a limitation as linearity of dependence leads to significant errors in forecasting.
Mining Technologies using neural network modeling make it possible to approximate the time series by a nonlinear dependence. Moreover, the process of constructing of a neural network model (determining the composition of input variables, the number of layers and the number of neurons in the layers, choosing the activation functions of neurons, determining the optimal values of the neuron link weights) allows us to obtain a predictive model in the form of an analytical nonlinear dependence.
The determination of the composition of input variables of neural network models is one of the key points in the construction of neural network models in various application areas that affect its adequacy. The composition of the input variables is traditionally selected from some physical considerations or by the selection method. In this work it is proposed to use the behavior of the autocorrelation and private autocorrelation functions for the task of determining the composition of the input variables of the predictive neural network model of the time series.
In this work is proposed a method for determining the composition of input variables of neural network models for stationary and non-stationary time series, based on the construction and analysis of autocorrelation functions. Based on the proposed method in the Python programming environment are developed an algorithm and a program, determining the composition of the input variables of the predictive neural network model — the perceptron, as well as building the model itself. The proposed method was experimentally tested using the example of constructing a predictive neural network model of a time series that reflects energy consumption in different regions of the United States, openly published by PJM Interconnection LLC (PJM) — a regional network organization in the United States. This time series is non-stationary and is characterized by the presence of both a trend and seasonality. Prediction of the next values of the time series based on previous values and the constructed neural network model showed high approximation accuracy, which proves the effectiveness of the proposed method.
-
Моделирование кластерного движения беспилотных транспортных средств в гетерогенном транспортном потоке
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1041-1058Одной из особенностей беспилотных автомобильных транспортных средств является их способность к организованному движению в форме кластеров: последовательности движущихся с единой скоростью транспортных средств. Влияние образования и движения этих кластеров на динамику транспортных потоков представляет большой интерес. В настоящей работе предложена качественная имитационная модель кластерного движения беспилотных транспортных средств в гетерогенной транспортной системе, состоящей из двух типов агентов (транспортных средств): управляемых человеком и беспилотных. В основу описания временной эволюции системы положены правила 184 и 240 для элементарных клеточных автоматов. Управляемые человеком транспортные средства перемещаются по правилу 184 с добавлением случайного торможения, вероятность которого зависит от расстояния до находящегося впереди транспортного средства. Для беспилотных транспортных средств используется комбинация правил, в том числе в зависимости от типа ближайших соседей, в некоторых случаях независимо от расстояния до них, что привносит в модель нелокальное взаимодействие. При этом учтено, что группа последовательно движущихся беспилотных транспортных средств может сформировать организованный кластер. Исследовано влияние соотношения типов транспортных средств в системе на характеристики транспортного потока при свободномд вижении на круговой однополосной и двухполосной дорогах, а также при наличии светофора. Результаты моделирования показали, что эффект образования кластеров имеет существенное влияние при свободномдвиж ении, а наличие светофора снижает положительный эффект приблизительно вдвое. Также исследовано движение кластеров из беспилотных автомобилей на двухполосных дорогах с возможностью перестроения. Показано, что учет при перестроении беспилотными транспортными средствами типов соседних транспортных средств (беспилотное или управляемое человеком) положительно влияет на характеристики транспортного потока.
Ключевые слова: клеточные автоматы, транспортные потоки, беспилотные автомобили, мультиагентные системы, компьютерное моделирование, гетерогенный трафик, интеллектуальные транспортные системы, кластерное движение.
A simulation model of connected automated vehicles platoon dynamics in a heterogeneous traffic flow
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1041-1058The gradual incorporation of automated vehicles into the global transport networks leads to the need to develop tools to assess the impact of this process on various aspects of traffic. This implies a more organized movement of automated vehicles which can form uniformly moving platoons. The influence of the formation and movement of these platoons on the dynamics of traffic flow is of great interest. The currently most developed traffic flow models are based on the cellular automaton approach. They are mainly developed in the direction of increasing accuracy. This inevitably leads to the complication of models, which in their modern form have significantly moved away from the original philosophy of cellular automata, which implies simplicity and schematicity of models at the level of evolution rules, leading, however, to a complex organized behavior of the system. In the present paper, a simulation model of connected automated vehicles platoon dynamics in a heterogeneous transport system is proposed, consisting of two types of agents (vehicles): human-driven and automated. The description of the temporal evolution of the system is based on modified rules 184 and 240 for elementary cellular automata. Human-driven vehicles move according to rule 184 with the addition of accidental braking, the probability of which depends on the distance to the vehicle in front. For automated vehicles, a combination of rules is used depending on the type of nearest neighbors, regardless of the distance to them, which brings non-local interaction to the model. At the same time, it is considered that a group of sequentially moving connected automated vehicles can form an organized platoon. The influence of the ratio of types of vehicles in the system on the characteristics of the traffic flow during free movement on a circular one-lane and two-lane roads, as well as in the presence of a traffic light, is studied. The simulation results show that the effect of platoon formation is significant for a freeway traffic flow; the presence of a traffic light reduces the positive effect by about half. The movement of platoons of connected automated vehicles on two-lane roads with the possibility of lane changing was also studied. It is shown that considering the types of neighboring vehicles (automated or human-driven) when changing lanes for automated vehicles has a positive effect on the characteristics of the traffic flow.
-
Идентификация управляемого объекта по частотным характеристикам, полученным экспериментально на нейросетевой динамической модели системы управления
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 729-740Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.
Ключевые слова: объект с системой управления, идентификация, нейронная сеть, моделирование, комплексная частотная характеристика, передаточная функция.
Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 729-740Просмотров за год: 10.We present results of a study aimed at identification of a controlled object’s channels based on postprocessing of measurements with development of a model of a multiple-input controlled object and subsequent active modelling experiment. The controlled object model is developed using approximation of its behavior by a neural network model using trends obtained during a passive experiment in the mode of normal operation. Recurrent neural network containing feedback elements allows to simulate behavior of dynamic objects; input and feedback time delays allow to simulate behavior of inertial objects with pure delay. The model was taught using examples of the object’s operation with a control system and is presented by a dynamic neural network and a model of a regulator with a known regulation function. The neural network model simulates the system’s behavior and is used to conduct active computing experiments. Neural network model allows to obtain the controlled object’s response to an exploratory stimulus, including a periodic one. The obtained complex frequency response is used to evaluate parameters of the object’s transfer system using the least squares method. We present an example of identification of a channel of the simulated control system. The simulated object has two input ports and one output port and varying transport delays in transfer channels. One of the input ports serves as a controlling stimulus, the second is a controlled perturbation. The controlled output value changes as a result of control stimulus produced by the regulator operating according to the proportional-integral regulation law based on deviation of the controlled value from the task. The obtained parameters of the object’s channels’ transfer functions are close to the parameters of the input simulated object. The obtained normalized error of the reaction for a single step-wise stimulus of the control system model developed based on identification of the simulated control system doesn’t exceed 0.08. The considered objects pertain to the class of technological processes with continuous production. Such objects are characteristic of chemical, metallurgic, mine-mill, pulp and paper, and other industries.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





