Текущий выпуск Номер 7, 2024 Том 16

Все выпуски

Результаты поиска по 'IMD2':
Найдено статей: 2
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1533-1538
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1533-1538
  2. Дегтярев А.А., Бахолдин Н.В., Масловский А.Ю., Бахурин С.А.
    Исследование традиционных и ИИ-моделей в задаче подавления интермодуляционных продуктов второго порядка
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1569-1578

    В данной работе рассматриваются нейросетевые модели и полиномиальные модели на основе полинома Чебышёва для компенсации помех. Показано, что нейросетевая модель обеспечивает компенсацию паразитных помех без необходимости настройки параметров, в отличие от полиномиальной модели, где требуется подбор оптимальных задержек. Для обеих архитектур использован метод L-BFGS, который достигает уровня компенсации, сопоставимого с решением LS для полиномиальной модели, с результатом NMSE = −23,59 дБ и требует менее 2000 итераций, что подтверждает его высокую эффективность. Также благодаря высокой обобщающей способности нейросетевых моделей метод первого порядка для нейросетевых архитектур демонстрирует более быструю сходимость по сравнению с полиномиальной моделью. За 20 000 итераций нейросетевая модель достигает прироста уровня компенсации на 0,44 дБ по сравнению с полиномом. В отличие от этого полиномиальная модель может достичь высокого уровня компенсации только при оптимальной настройке параметров методов первого порядка, что подчеркивает одно из ключевых преимуществ нейросетевых моделей.

    Degtyarev A.A., Bakholdin N.V., Maslovskiy A.Y., Bakhurin S.A.
    A study of traditional and AI-based models for second-order intermodulation product suppression
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1569-1578

    This paper investigates neural network models and polynomial models based on Chebyshev polynomials for interference compensation. It is shown that the neural network model provides compensation for parasitic interference without the need for parameter tuning, unlike the polynomial model, which requires the selection of optimal delays. The L-BFGS method is applied to both architectures, achieving a compensation level comparable to the LS solution for the polynomial model, with an NMSE result of −23.59 dB and requiring fewer than 2000 iterations, confirming its high efficiency. Additionally, due to the strong generalization ability of neural network architectures, the first-order method for neural networks demonstrates faster convergence compared to the polynomial model. In 20 000 iterations, the neural network model achieves a 0.44 dB improvement in compensation level compared to the polynomial model. In contrast, the polynomial model can only achieve high compensation levels with optimal first-order method parameter tuning, highlighting one of the key advantages of neural network models.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.