Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'motion':
Найдено статей: 87
  1. Брацун Д.А., Лоргов Е.С., Полуянов А.О.
    Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.

    Bratsun D.A., Lorgov E.S., Poluyanov A.O.
    Repressilator with time-delayed gene expression. Part I. Deterministic description
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259

    The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.

    Просмотров за год: 30.
  2. Бессонов Н.М., Бочаров Г.А., Бушнита А., Вольперт В.А.
    Гибридные модели в биомедицинских приложениях
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309

    В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.

    Bessonov N.M., Bocharov G.A., Bouchnita A., Volpert V.A.
    Hybrid models in biomedical applications
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309

    The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.

    Просмотров за год: 25.
  3. В работе выделены два значимых геометрических параметра, влияющих на интерполяцию физических величин, в методе гидродинамики сглаженных частиц (SPH). Это коэффициент сглаживания, связывающий размер частицы с величиной радиуса сглаживания, и коэффициент объема, позволяющий корректно определять массу частицы при заданном распределении частиц в среде.

    Предложена методика оценки влияния означенных параметров на точность интерполяций в методе SPH при решении гидростатической задачи. Для оценки точности численного решения вводятся аналитические функции относительной погрешности восстановления плотности и градиента давления в среде. Функции погрешности зависят от коэффициента сглаживания и коэффициента объема. Выбор конкретной интерполяции метода SPH позволяет преобразовать дифференциальную форму функций погрешности к форме алгебраического полинома. Корни такого полинома дают значения коэффициента сглаживания, обеспечивающие минимальную погрешность соответствующей интерполяции при заданном коэффициенте объема.

    В работе осуществлены вывод и анализф ункций относительных погрешностей плотности и градиента давления на выборке популярных ядер с различными радиусами сглаживания. Установлено, что для всех рассмотренных ядер не существует общего значения коэффициента сглаживания, обеспечивающего минимальную погрешность обеих SPH-интерполяций. Выделены представители ядер с различными радиусами сглаживания, позволяющие обеспечить наименьшие погрешности SPH-интерполяций при решении гидростатической задачи. Также определены некоторые ядра, не позволяющие обеспечить корректное интерполирование при решении гидростатической задачи методом SPH.

    Potapov I.I., Reshetnikova O.V.
    The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 979-992

    The two significant geometric parameters are proposed that affect the physical quantities interpolation in the smoothed particle hydrodynamics method (SPH). They are: the smoothing coefficient which the particle size and the smoothing radius are connecting and the volume coefficient which determine correctly the particle mass for a given particles distribution in the medium.

    In paper proposes a technique for these parameters influence assessing on the SPH method interpolations accuracy when the hydrostatic problem solving. The analytical functions of the relative error for the density and pressure gradient in the medium are introduced for the accuracy estimate. The relative error functions are dependent on the smoothing factor and the volume factor. Designating a specific interpolation form in SPH method allows the differential form of the relative error functions to the algebraic polynomial form converting. The root of this polynomial gives the smoothing coefficient values that provide the minimum interpolation error for an assigned volume coefficient.

    In this work, the derivation and analysis of density and pressure gradient relative errors functions on a sample of popular nuclei with different smoothing radius was carried out. There is no common the smoothing coefficient value for all the considered kernels that provides the minimum error for both SPH interpolations. The nuclei representatives with different smoothing radius are identified which make it possible the smallest errors of SPH interpolations to provide when the hydrostatic problem solving. As well, certain kernels with different smoothing radius was determined which correct interpolation do not allow provide when the hydrostatic problem solving by the SPH method.

  4. Anh N.D., Hai P.H., Hanh N.T., Vinh N.Q.
    The dynamic model of a high-rise firefighting drone
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 115-126

    The utilization of unmanned aerial vehicles (UAVs) in high-rise firefighting operations is the right solution for reaching the fire scene on high floors quickly and effectively. The article proposes a quadrotor-type firefighting UAV model carrying a launcher to launch a missile containing fire extinguishing powders into a fire. The kinematic model describing the flight kinematics of this UAV model is built based on the Newton – Euler method when the device is in normal motion and at the time of launching a firefighting missile. The results from the simulation testing the validity of the kinematic model and the simulation of the motion of the UAV show that the variation of Euler angles, flight angles, and aerodynamic angles during a flight are within an acceptable range and overload guarantee in flight. The UAV flew to the correct position to launch the required fire-extinguishing ammunition. The results of the research are the basis for building a control system of high-rise firefighting drones in Vietnam.

    Ключевые слова: firefighting, aerospace control, dynamical, simulation.
    Anh N.D., Hai P.H., Hanh N.T., Vinh N.Q.
    The dynamic model of a high-rise firefighting drone
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 115-126

    The utilization of unmanned aerial vehicles (UAVs) in high-rise firefighting operations is the right solution for reaching the fire scene on high floors quickly and effectively. The article proposes a quadrotor-type firefighting UAV model carrying a launcher to launch a missile containing fire extinguishing powders into a fire. The kinematic model describing the flight kinematics of this UAV model is built based on the Newton – Euler method when the device is in normal motion and at the time of launching a firefighting missile. The results from the simulation testing the validity of the kinematic model and the simulation of the motion of the UAV show that the variation of Euler angles, flight angles, and aerodynamic angles during a flight are within an acceptable range and overload guarantee in flight. The UAV flew to the correct position to launch the required fire-extinguishing ammunition. The results of the research are the basis for building a control system of high-rise firefighting drones in Vietnam.

  5. Во второй части работы представлены численные исследования параметров нижней ионосферы на высотах 40–90 км при воздействии на нее мощного потока коротковолнового радиоизлучения различной частоты и мощности. Постановка задачи изложена в первой части работы. Основное внимание уделяется взаимосвязи энергетических и кинетических параметров возмущенной $D$-области ионосферы в процессах, определяющих поглощение и трансформацию потока энергии радиолуча в пространстве и во времени. Показана возможность существенного различия в поведении параметров возмущенной области в дневное и ночное время как по величине, так и по пространственно-временному распределению. Ввиду отсутствия надежных значений констант скоростей ряда важных кинетических процессов численные исследования велись поэтапно, с постепенным добавлением отдельных процессов и кинетических блоков, соответствующих вместе с тем определенному физическому содержанию. Показано, что главную роль при этом играют энергетические пороги для неупругих столкновений электронов с молекулами воздуха. Данный подход позволил обнаружить эффект возникновения автоколебательного режима изменения параметров, если главным каналом для потерь энергии в неупругих процессах является наиболее энергоемкий процесс — ионизация. Этот эффект может играть роль при плазменных исследованиях с использованием высокочастотных индукционных и емкостных разрядов. Представлены результаты расчетов ионизационных и оптических параметров возмущенной $D$-области для дневных условий. Получены значения электронной температуры, концентрации, коэффициентов излучения в видимом и инфракрасном диапазонах спектра для различных значений мощности радиолуча и его частоты в нижней ионосфере. Получено высотно-временное распределение поглощенной мощности излучения, что необходимо при исследованиях более высоких слоев ионосферы. Подробно исследовано влияние на электронную температуру и на общее поведение параметров энергии, которая расходуется электронами на возбуждение колебательных и метастабильных состояний молекул. Показано, что в ночных условиях, когда нижняя граница электронной концентрации поднимается до 80 км, а концентрация тяжелых частиц снижается на два порядка по сравнению со средней областью $D$-слоя, при достаточной мощности радиоизлучения может развиваться крупномасштабное газодинамическое движение. На основе численной схемы Мак-Кормака разработан алгоритм и выполненыдв умерные газодинамические расчетып оведения параметров возмущенной области при определенных упрощениях кинетической части задачи.

    The second part presents numerical studies of the parameters of the lower ionosphere at altitudes of 40–90 km when heated by powerful high-frequency radio waves of various frequencies and powers. The problem statement is considered in the first part of the article. The main attention is paid to the interrelation between the energy and kinetic parameters of the disturbed $D$-region of the ionosphere in the processes that determine the absorption and transformation of the radio beam energy flux in space and time. The possibility of a significant difference in the behavior of the parameters of the disturbed region in the daytime and at nighttime, both in magnitude and in space-time distribution, is shown. In the absence of sufficiently reliable values of the rate constants for a number of important kinetic processes, numerical studies were carried out in stages with the gradual addition of individual processes and kinetic blocks corresponding at the same time to a certain physical content. It is shown that the energy thresholds for inelastic collisions of electrons with air molecules are the main ones. This approach made it possible to detect the effect of the emergence of a self-oscillating mode of changing parameters if the main channel for energy losses in inelastic processes is the most energy-intensive process — ionization. This effect may play a role in plasma studies using high-frequency inductive and capacitive discharges. The results of calculations of the ionization and optical parameters of the disturbed $D$-region for daytime conditions are presented. The electron temperature, density, emission coefficients in the visible and infrared ranges of the spectrum are obtained for various values of the power of the radio beam and its frequency in the lower ionosphere. The height-time distribution of the absorbed radiation power is calculated, which is necessary in studies of higher layers of the ionosphere. The influence on the electron temperature and on the general behavior of the parameters of energy losses by electrons on the excitation of vibrational and metastable states of molecules has been studied in detail. It is shown that under nighttime conditions, when the electron concentration begins at altitudes of about 80 km, and the concentration of heavy particles decreases by two orders of magnitude compared to the average $D$-region, large-scale gas-dynamic motion can develop with sufficient radio emission power The algorithm was developed based on the McCormack method and two-dimensional gas-dynamic calculations of the behavior of the parameters of the perturbed region were performed with some simplifications of the kinetics.

  6. Холодов А.С.
    Об эволюции возмущений, вызванных движением метеороидов в атмосфере Земли
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 993-1030

    На основе МГД-уравнений рассмотрены нестационарные 2D- и 3D-задачи об эволюции возмущений в нижней атмосфере и в ионосфере Земли, вызываемыхдвиж ением по пологим траекториям входа крупных метеороидов с имитацией ихразр ушения путем мгновенного увеличения миделя в точке максимума скоростного напора. По  результатам численного исследования получены и проанализированы детальные пространственно-временные распределения основныхпарамет ров плазменных течений, из которых, в частности, следует ряд явлений, сходных с наблюдавшимися в челябинском феномене.

    Kholodov A.S.
    About the Evolution of Perturbations Caused by the Movement of Meteoroids in the Earth’s Atmosphere
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 993-1030

    On the basis of the MGD equations we consider 2D- and 3D- nonstationary problems about the evolution of perturbations in the lower atmosphere and the Earth’s ionosphere which are caused by the movement of large meteoroids along gently sloping paths of the entry with the simulation of their destruction by the momentary increase of the midship at the point of the pressure head maximum. According to the results of our numerical investigation we obtain and analyze the detailed spatial-temporal distributions of the main parameters of the plasma flows from which in particular a number of phenomena that are similar to those seen in the Chelyabinsk phenomenon follow.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  7. Аристов В.В., Ильин О.В.
    Методы и задачи кинетического подхода для моделирования биологических структур
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866

    Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.

    Aristov V.V., Ilyin O.V.
    Methods and problems in the kinetic approach for simulating biological structures
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 851-866

    The biological structure is considered as an open nonequilibrium system which properties can be described on the basis of kinetic equations. New problems with nonequilibrium boundary conditions are introduced. The nonequilibrium distribution tends gradually to an equilibrium state. The region of spatial inhomogeneity has a scale depending on the rate of mass transfer in the open system and the characteristic time of metabolism. In the proposed approximation, the internal energy of the motion of molecules is much less than the energy of translational motion. Or in other terms we can state that the kinetic energy of the average blood velocity is substantially higher than the energy of chaotic motion of the same particles. We state that the relaxation problem models a living system. The flow of entropy to the system decreases in downstream, this corresponds to Shrödinger’s general ideas that the living system “feeds on” negentropy. We introduce a quantity that determines the complexity of the biosystem, more precisely, this is the difference between the nonequilibrium kinetic entropy and the equilibrium entropy at each spatial point integrated over the entire spatial region. Solutions to the problems of spatial relaxation allow us to estimate the size of biosystems as regions of nonequilibrium. The results are compared with empirical data, in particular, for mammals we conclude that the larger the size of animals, the smaller the specific energy of metabolism. This feature is reproduced in our model since the span of the nonequilibrium region is larger in the system where the reaction rate is shorter, or in terms of the kinetic approach, the longer the relaxation time of the interaction between the molecules. The approach is also used for estimation of a part of a living system, namely a green leaf. The problems of aging as degradation of an open nonequilibrium system are considered. The analogy is related to the structure, namely, for a closed system, the equilibrium of the structure is attained for the same molecules while in the open system, a transition occurs to the equilibrium of different particles, which change due to metabolism. Two essentially different time scales are distinguished, the ratio of which is approximately constant for various animal species. Under the assumption of the existence of these two time scales the kinetic equation splits in two equations, describing the metabolic (stationary) and “degradative” (nonstationary) parts of the process.

    Просмотров за год: 31.
  8. Статья посвящена численному исследованию ударно-волновых течений в неоднородных средах — газовзвесях. В данной работе применяется двухскоростная двухтемпературная модель, в которой дисперсная компонента смеси имеет свою скорость и температуру. Для описания изменения концентрации дисперсной компоненты решается уравнение сохранения «средней плотности». В данном исследовании учитывались межфазное тепловое взаимодействие и межфазный обмен импульсом. Математическая модель позволяет описывать несущею фазу смеси как вязкую, сжимаемою и теплопроводную среду. Система уравнений решалась с помощью явного конечно-разностного метода Мак-Кормака второго порядка точности. Для получения монотонного численного решения к сеточной функции применялась схема нелинейной коррекции. В задаче ударно-волнового течения для составляющих скорости задавались однородные граничные условия Дирихле, для остальных искомых функций задавались граничные условия Неймана. В численных расчетах для того, чтобы выявить зависимость динамики всей смеси от свойств твердой компоненты, рассматривались различные параметры дисперсной фазы — объемное содержание, а также линейный размер дисперсных включений. Целью исследований было определить, каким образом свойства твердых включений влияют на параметры динамики несущей среды — газа. Исследовалось движение неоднородной среды в ударной трубе — канале, разделенном на две части; давление газа в одном из отсеков канала имело большее значение, чем в другом. В статье моделировались движение прямого скачка уплотнения из камеры высокого давления в камеру низкого давления, заполненную запыленной средой, последующее отражение ударной волны от твердой поверхности. Анализ численных расчетов показал, что уменьшение линейного размера частиц газовзвеси и увеличение физической плотности материала, из которого состоят частицы, приводят к формированию более интенсивной отраженной ударной волны с большей температурой и плотностью газа, а также меньшей скоростью движения отраженного возмущения и меньшей скоростью спутного потока газа в отраженной волне.

    Tukmakov D.A.
    Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154

    The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.

  9. Грачев В.А., Найштут Ю.С.
    Релаксационные колебания и устойчивость тонких оболочек
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 807-820

    В работе изучаются возможности прогнозирования потери устойчивости тонких цилиндрических оболочек неразрушающими методами на стадии эксплуатации. Исследуются пологие оболочки, изготовленные из высокопрочных материалов. Для таких конструктивных решений характерны перемещения поверхностей, превосходящие толщины элементов. В рассматриваемых оболочках могут генерироваться релаксационные колебания значительной амплитуды даже при сравнительно невысоком уровне внутренних напряжений. Произведено упрощенное механико-математическое моделирование задачи о колебаниях цилиндрической оболочки, сводящее проблему к обыкновенному дифференциальному уравнению. При создании модели существенно использованы исследования многих авторов по изучению геометрии поверхности, образующейся после потери устойчивости. Нелинейное обыкновенное дифференциальное уравнение колеблющейся оболочки совпадает с хорошо изученным уравнением Дуффинга. Важно, что для тонких оболочек в уравнении Дуффинга появляется малый параметр перед второй производной по времени. Последнее обстоятельство дает возможность провести детальный анализ выведенного уравнения и описать релаксационные колебания — физическое явление, присущее только тонким высокопрочным оболочкам.

    Показано, что гармонические колебания оболочки вокруг положения равновесия и устойчивые релаксационные колебания определяются точкой бифуркации решений уравнения Дуффинга. Эта точка является первой в схеме Фейгенбаума по преобразованию устойчивых периодических движений в динамический хаос. Произведены вычисления амплитуды и периода релаксационных колебаний в зависимости от физических свойств и уровня внутренних напряжений в оболочке. Рассмотрены два случая нагружения: сжатие вдоль образующих и внешнее давление.

    Отмечено, что если внешние силы изменяются в течение времени по гармоническому закону, то периодическое колебание оболочки (нелинейный резонанс) состоит из отрезков медленного и скачкообразного движений. Этот факт, наряду со знанием амплитуды и частоты колеблющейся оболочки, позволяет предложить экспериментальную установку для прогноза потери устойчивости оболочки неразрушающим методом. В качестве критерия безопасности принято следующее требование: максимальные комбинации нагрузок не должны вызывать перемещения, превышающие заданные пределы. Получена формула, оценивающая запас устойчивости (коэффициент безопасности) конструкции по результатам экспериментальных измерений.

    Grachev V.A., Nayshtut Yu.S.
    Relaxation oscillations and buckling of thin shells
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 807-820

    The paper reviews possibilities to predict buckling of thin cylindrical shells with non-destructive techniques during operation. It studies shallow shells made of high strength materials. Such structures are known for surface displacements exceeding the thickness of the elements. In the explored shells relaxation oscillations of significant amplitude can be generated even under relatively low internal stresses. The problem of the cylindrical shell oscillation is mechanically and mathematically modeled in a simplified form by conversion into an ordinary differential equation. To create the model, the researches of many authors were used who studied the geometry of the surface formed after buckling (postbuckling behavior). The nonlinear ordinary differential equation for the oscillating shell matches the well-known Duffing equation. It is important that there is a small parameter before the second time derivative in the Duffing equation. The latter circumstance enables making a detailed analysis of the obtained equation and describing the physical phenomena — relaxation oscillations — that are unique to thin high-strength shells.

    It is shown that harmonic oscillations of the shell around the equilibrium position and stable relaxation oscillations are defined by the bifurcation point of the solutions to the Duffing equation. This is the first point in the Feigenbaum sequence to convert the stable periodic motions into dynamic chaos. The amplitude and the period of relaxation oscillations are calculated based on the physical properties and the level of internal stresses within the shell. Two cases of loading are reviewed: compression along generating elements and external pressure.

    It is highlighted that if external forces vary in time according to the harmonic law, the periodic oscillation of the shell (nonlinear resonance) is a combination of slow and stick-slip movements. Since the amplitude and the frequency of the oscillations are known, this fact enables proposing an experimental facility for prediction of the shell buckling with non-destructive techniques. The following requirement is set as a safety factor: maximum load combinations must not cause displacements exceeding specified limits. Based on the results of the experimental measurements a formula is obtained to estimate safety against buckling (safety factor) of the structure.

  10. Русяк И.Г., Тененев В.А.
    К вопросу о численном моделировании внутренней баллистики для трубчатого заряда в пространственной постановке
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 993-1010

    Для трубчатых пороховых элементов большого удлинения, используемых в артиллерийских метательных зарядах, имеют место условия неравномерного горения. Здесь необходимо параллельно рассматривать процессы горения и движения пороховых газов внутри и вне каналов пороховых трубок. Без этого невозможно адекватно поставить и решить задачи о воспламенении, эрозионном горении и напряженно-деформированном состоянии трубчатых пороховых элементов в процессе выстрела. В работе представлена физико-математическая постановка основной задачи внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Площади торца и сечения канала такого заряда (эквивалентной трубки) равны сумме площадей торцов и сечений каналов пороховых трубок соответственно. Поверхность горения канала равна сумме внутренних поверхностей трубок в пучке. Внешняя поверхность горения эквивалентной трубки равна сумме внешних поверхностей трубок в пучке. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. Для расчета параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. При перемещении и горении трубки разностная сетка перестраивается с учетом изменяющихся областей интегрирования. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С.К. Годунова. Разработанная методика использована при расчетах внутрибаллистических параметров артиллерийского выстрела. Данный подход рассмотрен впервые и позволяет по-новому подойти к проектированию трубчатых артиллерийских зарядов, поскольку позволяет получить необходимую информацию в виде полей скорости и давления пороховых газов для расчета процесса постепенного воспламенения, нестационарного эрозионного горения, напряженно-деформированного состояния и прочности пороховых элементов при выстреле. Представлены временные зависимости параметров внутрибаллистического процесса и распределения основных параметров течения продуктов горения в различные моменты времени.

    Rusyak I.G., Tenenev V.A.
    On the issue of numerical modeling of internal ballistics for a tubular charge in a spatial setting
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 993-1010

    There are conditions of uneven combustion for tubular powder elements of large elongation used in artillery propelling charges. Here it is necessary to consider in parallel the processes of combustion and movement of powder gases inside and outside the channels of the powder tubes. Without this, it is impossible to adequately formulate and solve the problems of ignition, erosive combustion and stress-strain state of tubular powder elements in the shot process. The paper presents a physical and mathematical formulation of the main problem of the internal ballistics of an artillery shot for a charge consisting of a set of powder tubes. Combustion and movement of a bundle of powder tubes along the barrel channel is modeled by an equivalent tubular charge of all-round combustion. The end and cross-sectional areas of the channel of such a charge (equivalent tube) are equal to the sum of the areas of the ends and cross-sections of the channels of the powder tubes, respectively. The combustion surface of the channel is equal to the sum of the inner surfaces of the tubes in the bundle. The outer combustion surface of the equivalent tube is equal to the sum of the outer surfaces of the tubes in the bundle. It is assumed that the equivalent tube moves along the axis of the bore. The speed of motion of an equivalent tubular charge and its current position are determined from Newton’s second law. To calculate the flow parameters, we used two-dimensional axisymmetric equations of gas dynamics, for the solution of which an axisymmetric orthogonalized difference mesh is constructed, which adapts to the flow conditions. When the tube moves and burns, the difference grid is rearranged taking into account the changing regions of integration. The control volume method is used for the numerical solution of the system of gas-dynamic equations. The gas parameters at the boundaries of the control volumes are determined using a self-similar solution to the Godunov problem of decay for an arbitrary discontinuity. The developed technique was used to calculate the internal ballistics parameters of an artillery shot. This approach is considered for the first time and allows a new approach to the design of tubular artillery charges, since it allows obtaining the necessary information in the form of fields of velocity and pressure of powder gases for calculating the process of gradual ignition, unsteady erosive combustion, stress-strain state and strength of powder elements during the shot. The time dependences of the parameters of the internal ballistics process and the distribution of the main parameters of the flow of combustion products at different times are presented.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.