Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Многомерный узловой метод характеристик для гиперболических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 19-32Предложен многомерный узловой метод характеристик, предназначенный для интегрирования гиперболических систем, базирующийся на расщеплении исходной системы уравнений на ряд одномерных подсистем, для расчета которых использован одномерный узловой метод характеристик. Приведены расчетные формулы, детально описана методика вычислений применительно к односкоростной модели гетерогенной среды при наличии сил гравитации. Представленный метод применим и к другим гиперболическим системам уравнений. С помощью этого явного, неконсервативного, первого порядка точности метода рассчитан ряд тестовых задач и показано, что в рамках предлагаемого подхода за счет привлечения дополнительных точек в шаблон схемы возможно проведение вычислений с числами Куранта, превышающими единицу. Так, в расчете обтекания трехмерной ступеньки потоком гетерогенной смеси число Куранта равнялось 1.2. В случае применения метода Годунова при решении этой же задачи макси- мальное число Куранта, при котором возможен устойчивый счет, имеет значение 0.13 × 10−2. Еще одна особенность многомерного метода характеристик связана со слабой зависимостью временного шага от размерности задачи, что существенно расширяет возможности этого подхода. С использованием этого метода рассчитан ряд задач, которые ранее считались «тяжелыми» для таких численных методов, как методы Годунова, Куранта – Изаксона – Рис, что связано с тем, что в нем наиболее полно использованы преимущества характеристического представления интегрируемой системы уравнений.
Ключевые слова: гиперболическая модель среды, гиперболические системы, многомерный узловой метод характеристик.
Multidimensional nodal method of characteristics for hyperbolic systems
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 19-32Disclosed is a multidimensional nodal method of characteristics, designed to integrate hyperbolic systems, based on splitting the initial system of equations into a number of one-dimensional subsystems, for which a onedimensional nodal method of characteristics is used. Calculation formulas are given, the calculation method is described in detail in relation to a single-speed model of a heterogeneous medium in the presence of gravity forces. The presented method is applicable to other hyperbolic systems of equations. Using this explicit, nonconservative, first-order accuracy of the method, a number of test tasks are calculated and it is shown that in the framework of the proposed approach, by attracting additional points in the circuit template, it is possible to carry out calculations with Courant numbers exceeding one. So, in the calculation of the flow of the threedimensional step by the flow of a heterogeneous mixture, the Courant number was 1.2. If Godunov’s method is used to solve the same problem, the maximum number of Courant, at which a stable account is possible, is 0.13 × 10-2. Another feature of the multidimensional method of characteristics is the weak dependence of the time step on the dimension of the problem, which significantly expands the possibilities of this approach. Using this method, a number of problems were calculated that were previously considered “heavy” for the numerical methods of Godunov, Courant – Isaacson – Rees, which is due to the fact that it most fully uses the advantages of the characteristic representation of the system of equations.
-
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
Ключевые слова: искусственные нейронные сети, машинное зрение, машинное обучение, сопровождение объекта, сверточные нейронные сети.
Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.
-
Об устойчивости гравитационной системы многих тел
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.
On the stability of the gravitational system of many bodies
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 487-511In this paper, a gravitational system is understood as a set of point bodies that interact according to Newton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of a gravitational system of general position is discussed by direct computational experiment. A gravitational system of general position is a system in which the masses, initial positions, and velocities of bodies are chosen randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large time intervals has been developed for the computational experiment. The proposed method allowed, on the one hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to use standard methods for the numerical solution of systems of differential equations of low approximation order. Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is discontinuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. The general conclusion of a series of computational experiments has shown that gravitational systems of general position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the proposed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computational experiments based on analytical methods, as well as direct numerical methods of high-order approximation (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion years or more. Due to the limitations on the available computational resources, the stability of the dynamics of the planets of the solar system within the framework of the proposed method was confirmed for a period of ten million years. With the help of a computational experiment, one of the possible scenarios for the disintegration of the solar systems is also considered.
-
Оценка вероятности спонтанного синтеза вычислительных структур применительно к реализации параллельной обработки информации
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 677-696Мы рассматриваем модель спонтанного формирования вычислительной структуры в мозге человека для решения заданного класса задач в процессе выполнения серии однотипных заданий. Модель основана на специальном определении числовой меры сложности алгоритма решения. Эта мера обладает информационным свойством: сложность вычислительной структуры, состоящей из двух независимых структур, равна сумме сложностей этих структур. Тогда вероятность спонтанного возникновения структуры экспоненциально зависит от сложности структуры. Коэффициент при экспоненте требует экспериментального определения для каждого типа задач. Он может зависеть от формы предъявления исходных данных и от процедуры выдачи результата. Этот метод оценки применен к результатам серии экспериментов, в которых определялась стратегия решения человеком серии однотипных задач с растущим числом исходных данных. Эти эксперименты были описаны в ранее изданных работах. Рассматривались две основные стратегии: последовательное выполнение вычислительного алгоритма или использование параллельных вычислений в тех задачах, где это эффективно. Эти стратегии различаются схемами проведения вычислений. Используя оценку сложности схем, можно по эмпирической вероятности одной из стратегий рассчитать вероятность другой. Проведенные вычисления показали хорошее совпадение расчетной и эмпирической вероятности. Это подтверждает гипотезу о спонтанном формировании структур, решающих задачу, в процессе начальной тренировки человека. Работа содержит краткое описание экспериментов, подробные вычислительные схемы и строгое определение меры сложности вычислительных структур и вывод зависимости вероятности формирования структуры от ее сложности.
Ключевые слова: алгоритм, вычислительная структура, итеративная структура, сложность, вероятность, инженерная психология, статистика.
Estimation of the probability of spontaneous synthesis of computational structures in relation to the implementation of parallel information processing
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 677-696We consider a model of spontaneous formation of a computational structure in the human brain for solving a given class of tasks in the process of performing a series of similar tasks. The model is based on a special definition of a numerical measure of the complexity of the solution algorithm. This measure has an informational property: the complexity of a computational structure consisting of two independent structures is equal to the sum of the complexities of these structures. Then the probability of spontaneous occurrence of the structure depends exponentially on the complexity of the structure. The exponential coefficient requires experimental determination for each type of problem. It may depend on the form of presentation of the source data and the procedure for issuing the result. This estimation method was applied to the results of a series of experiments that determined the strategy for solving a series of similar problems with a growing number of initial data. These experiments were described in previously published papers. Two main strategies were considered: sequential execution of the computational algorithm, or the use of parallel computing in those tasks where it is effective. These strategies differ in how calculations are performed. Using an estimate of the complexity of schemes, you can use the empirical probability of one of the strategies to calculate the probability of the other. The calculations performed showed a good match between the calculated and empirical probabilities. This confirms the hypothesis about the spontaneous formation of structures that solve the problem during the initial training of a person. The paper contains a brief description of experiments, detailed computational schemes and a strict definition of the complexity measure of computational structures and the conclusion of the dependence of the probability of structure formation on its complexity.
-
Анализ механических структур сложных технических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 903-916Работа посвящена структурному анализу сложных технических систем. Рассматриваются механические структуры, свойства которых влияют на поведение изделия в процессе сборки, ремонта и эксплуатации. Основным источником данных о деталях и механических связях между ними является гиперграф. Эта модель формализует многоместное отношение базирования. Она корректно описывает связность и взаимную координацию деталей, которые достигаются в процессе сборки изделия. При разработке сложных изделий в CAD-системах инженер часто допускает тяжелые проектные ошибки: перебазирование деталей и несеквенциальность сборочных операций. Предложены эффективные способы идентификации данных структурных дефектов. Показано, что свойство независимой собираемости можно представить как оператор замыкания на булеане множества деталей изделия. Образы этого оператора представляют собой связные координированные совокупности деталей, которые можно собрать независимо. Описана решеточная модель, которая представляет собой пространство состояний изделия в процессе сборки, разборки и декомпозиции на сборочные единицы. Решеточная модель служит источником разнообразной структурной информации о проекте. Предложены численные оценки мощности множества допустимых альтернатив в задачах выбора последовательности сборки и декомпозиции на сборочные единицы. Для многих технических операций (например, контроль, испытания и др.) необходимо монтировать все детали-операнды в одну сборочную единицу. Разработана простая формализация технических условий, требующих включения (исключения) деталей в сборочную единицу (из сборочной единицы). Приведена теорема, которая дает математическое описание декомпозиции изделия на сборочные единицы в точных решеточных терминах. Предложен способ численной оценки робастности механической структурыс ложной технической системы.
Ключевые слова: механическая структура, структурный анализ, автоматизированное проектирование, гиперграфовая модель структуры, решеточная модель изделия.
Analysis of mechanical structures of complex technical systems
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 903-916The work is devoted to the structural analysis of complex technical systems. Mechanical structures are considered, the properties of which affect the behavior of products during assembly, repair and operation. The main source of data on parts and mechanical connections between them is a hypergraph. This model formalizes the multidimensional basing relation. The hypergraph correctly describes the connectivity and mutual coordination of parts, which is achieved during the assembly of the product. When developing complex products in CAD systems, an engineer often makes serious design mistakes: overbasing of parts and non-sequential assembly operations. Effective ways of identifying these structural defects have been proposed. It is shown that the property of independent assembly can be represented as a closure operator whose domain is the boolean of the set of product parts. The images of this operator are connected and coordinated subsets of parts that can be assembled independently. A lattice model is described, which is the state space of the product during assembly, disassembly and decomposition into assembly units. The lattice model serves as a source of various structural information about the project. Numerical estimates of the cardinality of the set of admissible alternatives in the problems of choosing an assembly sequence and decomposition into assembly units are proposed. For many technical operations (for example, control, testing, etc.), it is necessary to mount all the operand parts in one assembly unit. A simple formalization of the technical conditions requiring the inclusion (exclusion) of parts in the assembly unit (from the assembly unit) has been developed. A theorem that gives an mathematical description of product decomposition into assembly units in exact lattice terms is given. A method for numerical evaluation of the robustness of the mechanical structure of a complex technical system is proposed.
-
Сравнение результатов применения различных эволюционных алгоритмов для решения задачи оптимизации маршрута беспилотных аппаратов
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 45-62В данной работе проводится сравнительный анализ точного и эвристических алгоритмов, представленных методом ветвей и границ, генетическим и муравьиным алгоритмами соответственно, для поиска оптимального решения задачи коммивояжера на примере робота-курьера. Целью работы является определение времени работы, длины полученного маршрута и объема памяти, необходимого для работы программы, при использовании метода ветвей и границ и эволюционных эвристических алгоритмов. Также определяется наиболее целесообразный из перечисленных методов для применения в заданных условиях. В настоящей статье используются материалы проведенного исследования, реализованного в формате программы для ЭВМ, программный код для которой реализован на языке Python. В ходе исследования был выбран ряд критериев применимости алгоритмов (время работы программы, длина построенного маршрута и объем необходимой для работы программы памяти), получены результаты работы алгоритмов в заданных условиях и сделаны выводы о степени целесообразности применения того или иного алгоритма в различных заданных условиях работы робота-курьера. В ходе исследования выяснилось, что для малого количества точек ($\leqslant10$) метод ветвей и границ является наиболее предпочтительным, так как находит оптимальное решение быстрее. Однако при вычислении маршрута этим методом, при условии увеличения точек более 10, время работы растет экспоненциально. В таком случае более эффективные результаты дает эвристический подход с использованием генетического и муравьиного алгоритмов. При этом муравьиный алгоритм отличается решениями, наиболее близкими к эталонным, при увеличении точек более 16. Относительным недостатком его является наибольшая ресурсоемкость среди рассматриваемых алгоритмов. Генетический алгоритм дает схожие результаты, но при увеличении точек более 16 растет длина найденного маршрута относительно эталонного. Преимущество генетического алгоритма — его меньшая ресурсоемкость по сравнению с другими алгоритмами.
Практическая значимость данной статьи заключается в потенциальной возможности использования полученных результатов для оптимального решения логистических задач автоматизированной системой в различных сферах: складская логистика, транспортная логистика, логистика «последней мили» и т. д.
Ключевые слова: беспилотные аппараты, алгоритмы оптимизации, метод ветвей и границ, генетический алгоритм, муравьиный алгоритм, задача коммивояжера, логистические системы.
Comparison of the results of using various evolution algorithms to solve the problem of route optimization of unmanned vehicles
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 45-62In this paper, a comparative analysis of the exact and heuristic algorithms presented by the method of branches and boundaries, genetic and ant algorithms, respectively, is carried out to find the optimal solution to the traveling salesman problem using the example of a courier robot. The purpose of the work is to determine the running time, the length of the obtained route and the amount of memory required for the program to work, using the method of branches and boundaries and evolutionary heuristic algorithms. Also, the most appropriate of the listed methods for use in the specified conditions is determined. This article uses the materials of the conducted research, implemented in the format of a computer program, the program code for which is implemented in Python. In the course of the study, a number of criteria for the applicability of algorithms were selected (the time of the program, the length of the constructed route and the amount of memory necessary for the program to work), the results of the algorithms were obtained under specified conditions and conclusions were drawn about the degree of expediency of using one or another algorithm in various specified conditions of the courier robot. During the study, it turned out that for a small number of points $\leqslant10$, the method of branches and boundaries is the most preferable, since it finds the optimal solution faster. However, when calculating the route by this method, provided that the points increase by more than 10, the operating time increases exponentially. In this case, more effective results are obtained by a heuristic approach using a genetic and ant algorithm. At the same time, the ant algorithm is distinguished by solutions that are closest to the reference ones and with an increase of more than 16 points. Its relative disadvantage is the greatest resource intensity among the considered algorithms. The genetic algorithm gives similar results, but after increasing the points more than 16, the length of the found route increases relative to the reference one. The advantage of the genetic algorithm is its lower resource intensity compared to other algorithms.
The practical significance of this article lies in the potential possibility of using the results obtained for the optimal solution of logistics problems by an automated system in various fields: warehouse logistics, transport logistics, «last mile» logistics, etc.
-
Метод эллипсоидов для задач выпуклой стохастической оптимизации малой размерности
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1137-1147В статье рассматривается задача минимизации математического ожидания выпуклой функции. Задачи такого вида повсеместны в машинном обучении, а также часто возникают в ряде других приложений. На практике для их решения обычно используются процедуры типа стохастического градиентного спуска (SGD). В нашей работе предлагается решать такие задачи с использованием метода эллипсоидов с мини-батчингом. Алгоритм имеет линейную скорость сходимости и может оказаться эффективнее SGD в ряде задач. Это подтверждается в наших экспериментах, исходный код которых находится в открытом доступе. Для получения линейной скорости сходимости метода не требуется ни гладкость, ни сильная выпуклость целевой функции. Таким образом, сложность алгоритма не зависит от обусловленности задачи. В работе доказывается, что метод эллипсоидов с наперед заданной вероятностью находит решение с желаемой точностью при использовании мини-батчей, размер которых пропорционален точности в степени -2. Это позволяет выполнять алгоритм параллельно на большом числе процессоров, тогда как возможности для батчараллелизации процедур типа стохастического градиентного спуска весьма ограничены. Несмотря на быструю сходимость, общее количество вычислений градиента для метода эллипсоидов может получиться больше, чем для SGD, который неплохо сходится и при маленьком размере батча. Количество итераций метода эллипсоидов квадратично зависит от размерности задачи, поэтому метод подойдет для относительно небольших размерностей.
Ellipsoid method for convex stochastic optimization in small dimension
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1137-1147The article considers minimization of the expectation of convex function. Problems of this type often arise in machine learning and a variety of other applications. In practice, stochastic gradient descent (SGD) and similar procedures are usually used to solve such problems. We propose to use the ellipsoid method with mini-batching, which converges linearly and can be more efficient than SGD for a class of problems. This is verified by our experiments, which are publicly available. The algorithm does not require neither smoothness nor strong convexity of the objective to achieve linear convergence. Thus, its complexity does not depend on the conditional number of the problem. We prove that the method arrives at an approximate solution with given probability when using mini-batches of size proportional to the desired accuracy to the power −2. This enables efficient parallel execution of the algorithm, whereas possibilities for batch parallelization of SGD are rather limited. Despite fast convergence, ellipsoid method can result in a greater total number of calls to oracle than SGD, which works decently with small batches. Complexity is quadratic in dimension of the problem, hence the method is suitable for relatively small dimensionalities.
-
Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.
В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.
Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.
Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.
Linearly convergent gradient-free methods for minimization of parabolic approximation
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.
In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.
In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.
Experimental results confirm the efficiency and practical applicability of all the obtained methods.
-
Разностный метод решения уравнения конвекции–диффузии с неклассическим граничным условием в многомерной области
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 559-579В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.
Ключевые слова: параболическое уравнение, многомерное уравнение, разностные схемы, локально-одномерная схема, априорная оценка, устойчивость, сходимость.
A difference method for solving the convection–diffusion equation with a nonclassical boundary condition in a multidimensional domain
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 559-579The paper studies a multidimensional convection-diffusion equation with variable coefficients and a nonclassical boundary condition. Two cases are considered: in the first case, the first boundary condition contains the integral of the unknown function with respect to the integration variable $x_\alpha^{}$, and in the second case, the integral of the unknown function with respect to the integration variable $\tau$, denoting the memory effect. Similar problems arise when studying the transport of impurities along the riverbed. For an approximate solution of the problem posed, a locally one-dimensional difference scheme by A.A. Samarskii with order of approximation $O(h^2+\tau)$. In view of the fact that the equation contains the first derivative of the unknown function with respect to the spatial variable $x_\alpha^{}$, the wellknown method proposed by A.A. Samarskii in constructing a monotonic scheme of the second order of accuracy in $h_\alpha^{}$ for a general parabolic type equation containing one-sided derivatives taking into account the sign of $r_\alpha^{}(x,t)$. To increase the boundary conditions of the third kind to the second order of accuracy in $h_\alpha^{}$, we used the equation, on the assumption that it is also valid at the boundaries. The study of the uniqueness and stability of the solution was carried out using the method of energy inequalities. A priori estimates are obtained for the solution of the difference problem in the $L_2^{}$-norm, which implies the uniqueness of the solution, the continuous and uniform dependence of the solution of the difference problem on the input data, and the convergence of the solution of the locally onedimensional difference scheme to the solution of the original differential problem in the $L_2^{}$-norm with speed equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed.
-
Разработка и применение метода расщепления по физическим факторам для исследования течений несжимаемой жидкости
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 715-739Описано развитие метода расщепления по физическим факторам для исследования течений несжимаемой жидкости (МЕРАНЖ), прошедшее за последние 50 лет. Гибридная явная конечно-разностная схема метода основана на модифицированной схеме с центральными разностями (МСЦР) и модифицированной схеме с ориентированными разностями (MСОР) со специальным условием переключения в зависимости от знака скорости переноса и знаков первой и второй разностей переносимых функций. Показано применение данного метода для решения некоторых задач (пространственный поток около сферы и кругового цилиндра для случаев однородной и стратифицированной жидкостей в широком диапазоне безразмерных параметров задачи, включая переходные режимы обтекания (2D–3D-переход, ламинарно-турбулентный переход в пограничном слое); плоскостная задача течения жидкости со свободной поверхностью; динамика вихревой пары в воде; коллапс пятен в стратифицированной жидкости; моделирование воздухо-, тепло- и массопереноса в «чистых производственных помещениях»).
Ключевые слова: метод расщепления, гибридная явная конечно-разностная схема, течения несжимаемой жидкости.
Development and application of the method of splitting by physical factors for the study of the incompressible fluid flows
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 715-739The development of the Splitting Method for Incompressible Fluid flows (SMIF) during last 50 years is described. The hybrid explicit finite difference scheme of method SMIF is based on Modified Central Difference Scheme (MCDS) and Modified Upwind Difference Scheme (MUDS) with special switch condition depending on the velocity sign and the signs of the first and second differences of transferred functions. Application of this method for solving of some tasks (the spatial flow around a sphere and a circular cylinder for homogeneous and stratified fluids in a wide range of dimensionless parameters of the problem, including the transitional regimes (2D–3D transition, laminar-turbulent transition in the boundary layer); a plane problem of fluid flows with a free surface; a dynamics of vortex pair in a water; a collapse of spots in stratified fluid; the air-, heat-, and mass transfer in «clean rooms») is demonstrated.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





