Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'method of modeling':
Найдено статей: 464
  1. Полякова Р.В., Юдин И.П.
    Математическое моделирование магнитной системы методом регуляризации по А. Н. Тихонову
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 165-175

    В данной работе решается задача поиска конструкции магнитной системы для создания магнитного поля с требуемыми характеристиками в заданной области. На основе анализа математической модели магнитной системы предлагается достаточно общий подход к решению нелинейной обратной задачи, которая описывается уравнением Фредгольма H(z) = ∫SIJ(s)G(z, s)ds, z ∈ S H, s ∈ S I . Необходимо определить распределение плотности тока J(s), а также расстановку источников тока для создания поля H(z). В работе предлагается метод решения этих задачс помощью регуляризованных итерационных процессов. На примере конкретной магнитной системы проводится численное исследование влияния различных факторов на характер создаваемого магнитного поля.

    Polyakova R.V., Yudin I.P.
    Mathematical modelling of the magnetic system by A. N. Tikhonov regularization method
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 165-175

    In this paper the problem of searching for the design of the magnetic system for creation a magnetic field with the required characteristics in the given area is solved. On the basis of analysis of the mathematical model of the magnetic system rather a general approach is proposed to the solving of the inverse problem, which is written by the Fredgolm equation H(z) = ∫SIJ(s)G(z, s)ds, z ∈ S H, s ∈ S I . It was necessary to define the current density distribution function J(s) and the existing winding geometry for creation of a required magnetic field H(z). In the paper a method of solving those by means of regularized iterative processes is proposed. On the base of the concrete magnetic system we perform the numerical study of influence of different factors on the character of the magnetic field being designed.

  2. Проведено математическое моделирование нестационарных режимов естественной конвекции в замкнутой пористой цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного теплообмена с внешней средой. Краевая задача математической физики, сформулированная на основе модели Дарси–Буссинеска в безразмерных переменных «функция тока – температура», реализована численно методом конечных разностей. Детально проанализировано влияние проницаемости пористой среды 10–5≤Da<∞, отношения толщины твердой оболочки к внутреннему радиусу цилиндра 0.1≤h/L≤0.3, относительного коэффициента теплопроводности 1≤λ1,2≤20 и безразмерного времени 0≤τ≤1000 как на локальные распределения изолиний функции тока и температуры, так и на интегральные комплексы, отражающие интенсивность конвективного течения и теплопереноса.

    Trifonova T.A., Sheremet M.A.
    Numerical simulation of unsteady conjugate natural convection in a cylindrical porous domain (Darcy–Boussinesq model)
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 179-191

    Mathematical simulation on unsteady natural convection in a closed porous cylindrical cavity having finite thickness heat-conducting solid walls in conditions of convective heat exchange with an environment has been carried out. A boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function and temperature on the basis of Darcy–Boussinesq model has been solved by finite difference method. Effect of a porous medium permeability 10–5≤Da<∞, ratio between a solid wall thickness and the inner radius of a cylinder 0.1≤h/L≤0.3, a thermal conductivity ratio 1≤λ1,2≤20 and a dimensionless time on both local distributions of isolines and isotherms and integral complexes reflecting an intensity of convective flow and heat transfer has been analyzed in detail.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  3. Кузнецов В.Л., Рудковский А.С.
    Модификация метода погружения в задаче расчета 3D фотонного кристалла типа «Woodpile»
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 413-422

    В работе предложена модификация метода инвариантного погружения для описания взаимодействия 3D векторного электромагнитного поля с фотонным кристаллом типа «woodpile», позволяющая обойти проблему резонансного усиления эванесцентных мод на этапе интегрирования уравнений погружения для первого слоя кристалла. Построенная математическая модель фотонного кристалла дает результаты, хорошо совпадающие с результатами физического эксперимента.

    Kuznetsov V.L., Rudkovskiy A.S.
    Invariant embedding method modification for calculation of “Woodpile” photonic crystal
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 413-422

    Modification of the invariant imbedding method to describe the interaction of 3D electromagnetic field with “woodpile” photonic crystal of finite thickness is considered in this paper. This modification allows solving a problem of evanescent modes resonant amplification during numerical calculations for the first layer of photonic crystal. The mathematical model created in this work gives good agreement with physical experiment results.

    Просмотров за год: 1.
  4. Петров И.Б., Миряха В.А., Санников А.В., Шевцов А.В.
    Численное моделирование начальной стадии разрушения метеорита в плотных слоях атмосферы в упругопластическом приближении
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 957-967

    В статье приводятся результаты моделирования деформации метеорита при попадании в плотные слои атмосферы разрывным методом Галёркина на неструктурированных треугольных сетках и методом сглаженных частиц. В качестве исходных данных брались материалы по Челябинскому метеориту. Проводилась серия расчётов, где варьировались характеристики материала метеорита и угол входа в плотные слои атмосферы.

    Petrov I.B., Miryaha V.A., Sannikov A.V., Shevtsov A.V.
    Computational modeling of a meteor entering atmosphere dense layers using elastoplastic approximation
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 957-967

    The article contains results of modeling a meteor entering dense atmosphere layers using Galerkin’s method and smoother particle hydrodynamics. Numerical simulations were run using experimental data gathered for the Chelyabinsk meteor while varying the meteor material characteristics and its orientation when entering the atmosphere.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  5. Копысов С.П., Кузьмин И.М., Недожогин Н.С., Новиков А.К., Рычков В.Н., Сагдеева Ю.А., Тонков Л.Е.
    Параллельная реализация конечно-элементных алгоритмов на графических ускорителях в программном комплексе FEStudio
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 79-97

    Рассматриваются новые подходы и алгоритмы распараллеливания вычислений метода конечных элементов, реализованные в программном комплексе FEStudio. Представлена программная модель комплекса, позволяющая расширять возможности распараллеливания на различных уровнях вычислений. Разработаны параллельные алгоритмы численного интегрирования динамических задач и локальных матриц жесткости, формирования и решения систем уравнений с использованием модели параллелизма данных CUDA.

    Kopysov S.P., Kuzmin I.M., Nedozhogin N.S., Novikov A.K., Rychkov V.N., Sagdeeva Y.A., Tonkov L.E.
    Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 79-97

    In this paper, we present new parallel algorithms for finite element analysis implemented in the FEStudio software framework. We describe the programming model of finite element method, which supports parallelism on different stages of numerical simulations. Using this model, we develop parallel algorithms of numerical integration for dynamic problems and local stiffness matrices. For constructing and solving the systems of equations, we use the CUDA programming platform.

    Просмотров за год: 4. Цитирований: 24 (РИНЦ).
  6. Угольницкий Г.А., Усов А.Б., Рыжкин А.И.
    Метод побуждения в играх Гермейера при моделировании трехуровневой системы управления судовыми балластными водами
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 535-542

    Построена статическая трехуровневая теоретико-игровая модель системы управления судовыми балластными водами. Используются методы иерархического управления при одновременном учете условий поддержания системы в заданном состоянии. Проводится сравнение результатов исследования модели с точки зрения игр Гермейера $\Gamma_1$ и $\Gamma_2$. Приведены примеры численных расчетов в ряде характерных случаев.

    Ougolnitsky G.A., Usov A.B., Ryzhkin A.I.
    The motivation method in the Germeyer’s games at modeling three-level control system of the ship’s ballast water
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 535-542

    The static three-level game-theoretic model of three-level control system of the ship’s water ballast is built. The methods of hierarchical control in view of requirements of keeping the system in the given state are used. A comparison of the results of study of the model in terms of $\Gamma_1$ and $\Gamma_2$ Germeyer’s games is conducted. Numerical calculations for some typical cases are given.

    Цитирований: 5 (РИНЦ).
  7. Данная работа посвящена применению метода построения и конвертирования трехмерных компьютерных геометрических моделей для оптимизации параметров моделируемых устройств. Метод использован при проектировании сложных технических устройств на примере компонентов системы управления рециркуляцией выхлопных газов автомобиля: электропривода клапана рециркуляции с магнитопроводом и электродвигателем. Трехмерные компьютерные геометрические модели созданы в среде «Компас-3D» и конвертированы в среду Maxwell-2D. В среде Maxwell-2D рассчитаны переходные электромагнитные процессы для последующей оптимизации параметров устройств системы рециркуляции по критерию снижения потерь мощности автомобильного двигателя.

    Abbasov A.E.
    Converting three-dimensional computer geometric models for optimization of simulated devices’ parameters
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 81-91

    This work focuses on the application of a method of construction and conversion of three-dimensional computer models for optimization of geometric parameters of simulated devices. The method is used in design of complex technical devices for control system components of an exhaust gas recirculation vehicle – electric EGR valve with magnetic and electric motor. Three-dimensional geometric computer models were created in KOMPAS-3D environment and converted to Maxwell-2D. In Maxwell-2D environment transient electromagnetic processes for further optimization of parameters of therecirculation system devicewere calculated using a criterion of reducing power loss of the automobile engine.

    Просмотров за год: 1. Цитирований: 16 (РИНЦ).
  8. Петров И.Б., Муратов М.В., Фаворская А.В., Бирюков В.А., Санников А.В.
    Численное моделирование прямых трехмерных задач сейсморазведки с применением сеточно-характеристического метода на неструктурированных тетраэдральных сетках
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 875-887

    В статье приводятся результаты трехмерного моделирования сейсмических откликов от трещиноватых геологических пластов с использованием сеточно-характеристического метода на неструктурированных тетраэдральных сетках с применением высокопроизводительных вычислительных систем. Используемый метод лучше всего подходит для моделирования задач сейсморазведки в областях с большим числом неоднородностей (трещин). Применение неструктурированных тетраэдральных сеток позволяет задавать трещины произвольной геометрии и пространственной ориентации, что дает возможность решать задачи в постановке, наиболее приближенной к реальности.

    Petrov I.B., Muratov M.V., Favorskaya A.V., Biryukov V.A., Sannikov A.V.
    Numerical modeling of straight 3D exploration seismology problems with use of grid-characteristic method on unstructured tetrahedral meshes
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 875-887

    The article contains results of 3D modeling of seismic responses from fractured geological formations with use of grid-characteristic method on unstructured tetrahedral meshes with use of high-performance computation systems. The method being used is the most suitable for modeling of heterogenic domains exploration seismology problems. The use of unstructured tetrahedral meshes allows modeling of different geometry and space orientation fractures. That gives us possibility to solve the problems in the most real set.

    Просмотров за год: 7. Цитирований: 1 (РИНЦ).
  9. Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.

    The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.

    Просмотров за год: 15. Цитирований: 6 (РИНЦ).
  10. Алпеева Л.Е., Цибулин В.Г.
    Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671

    Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.

    Alpeeva L.E., Tsybulin V.G.
    The cosymmetric approach to the analysis of spatial structure of populations with amount of taxis
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 661-671

    We consider a mathematical model describing the competition for a heterogeneous resource of two populations on a one-dimensional area. Distribution of populations is governed by diffusion and directed migration, species growth obeys to the logistic law. We study the corresponding problem of nonlinear parabolic equations with variable coefficients (function of a resource, parameters of growth, diffusion and migration). Approach on the theory the cosymmetric dynamic systems of V. Yudovich is applied to the analysis of population patterns. Conditions on parameters for which the problem under investigation has nontrivial cosymmetry are analytically derived. Numerical experiment is used to find an emergence of continuous family of steady states when cosymmetry takes place. The numerical scheme is based on the finite-difference discretization in space using the balance method and integration on time by Runge-Kutta method. Impact of diffusive and migration parameters on scenarios of distribution of populations is studied. In the vicinity of the line, corresponding to cosymmetry, neutral curves for diffusive parameters are calculated. We present the mappings with areas of diffusive parameters which correspond to scenarios of coexistence and extinction of species. For a number of migration parameters and resource functions with one and two maxima the analysis of possible scenarios is carried out. Particularly, we found the areas of parameters for which the survival of each specie is determined by initial conditions. It should be noted that dynamics may be nontrivial: after starting decrease in densities of both species the growth of only one population takes place whenever another specie decreases. The analysis has shown that areas of the diffusive parameters corresponding to various scenarios of population patterns are grouped near the cosymmetry lines. The derived mappings allow to explain, in particular, effect of a survival of population due to increasing of diffusive mobility in case of starvation.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.