Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование влияния миграции на социальную напряженность с использованием модели сплошной социальной стратификации
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 661-673Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.
Ключевые слова: социальнаяна пряженность, модель сплошной социальной стратификации, уравнение нелинейной диффузии, метод конечных объемов.
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
Результаты моделирования полевых экспериментов по созданию восходящих потоков для развития искусственных облаков и осадков
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 941-956Перспективным методом повышения количества осадков в засушливом климате является способ создания вертикальной высокотемпературной струи, насыщенной гигроскопическим аэрозолем. Такая установка позволяет создавать искусственные облака с возможностью образования осадков в безоблачной атмосфере, в отличие от традиционных способов искусственного увеличения осадков, в которых предусматривается повышение эффективности осадко-образования только в естественных облаках путем их засева ядрами кристаллизации и конденсации. Для увеличения мощности струи добавляются хлорид кальция, карбамид, пищевая соль в виде грубодисперсного аэрозоля, а также нанопорошок NaCl/TiO2, который способен конденсировать значительно больше водяного пара, чем перечисленные типы аэрозолей. Дисперсные включения в струе также являются центрами кристаллизации и конденсации в создаваемом облаке для повышения возможности осадкообразования. Для моделирования конвективных течений в атмосфере применяется математическая модель атмосферных течений большого масштаба FlowVision, решение уравнений движения, энергии и массопереноса проводится в относительных переменных. Рассматриваемая постановка задачи разделена на две части: модель начальной струи и постановка атмосферных течений большого масштаба FlowVision. Нижняя область, где происходит течение начальной высокоскоростной струи, моделируется в сжимаемой постановке с решением уравнения энергии относительно полной энтальпии. Данное разделение задачи на две отдельные подобласти необходимо, чтобы корректно провести численный расчет начальной турбулентной струи при высокой скорости (M > 0,3). Приводятся основные математические зависимости модели. С использованием представленной модели проведены численные эксперименты, для исходных данных взяты экспериментальные данные из натурных испытаний установки по созданию искусственных облаков, проведенные в Объединенных Арабских Эмиратах. Получено хорошее согласие с экспериментом: в 55% проведенных расчетов значение вертикальной скорости на высоте 400 м (более 2 м/с) и высота подъема струи (более 600 м) находятся в пределах погрешности 30% от экспериментальных характеристик, а в 30% расчетах — полностью согласуются с экспериментом. Результаты численного моделирования позволяют оценить возможность использования метода высокоскоростной струи для стимулирования искусственной конвекции и, в конечном итоге, для создания осадков. Расчеты проведены с использованием программного комплекса FlowVision на суперкомпьютере «Торнадо ЮУрГУ».
Ключевые слова: искусственные осадки, искусственные облака, CFD, вычислительная газодинамика, метеорология, высокоскоростная струя, метеотроны.
Simulation results of field experiments on the creation of updrafts for the development of artificial clouds and precipitation
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 941-956A promising method of increasing precipitation in arid climates is the method of creating a vertical high-temperature jet seeded by hygroscopic aerosol. Such an installation makes it possible to create artificial clouds with the possibility of precipitation formation in a cloudless atmosphere, unlike traditional methods of artificial precipitation enhancement, which provide for increasing the efficiency of precipitation formation only in natural clouds by seeding them with nuclei of crystallization and condensation. To increase the power of the jet, calcium chloride, carbamide, salt in the form of a coarse aerosol, as well as NaCl/TiO2 core/shell novel nanopowder, which is capable of condensing much more water vapor than the listed types of aerosols, are added. Dispersed inclusions in the jet are also centers of crystallization and condensation in the created cloud to increase the possibility of precipitation. To simulate convective flows in the atmosphere, a mathematical model of FlowVision large-scale atmospheric flows is used, the solution of the equations of motion, energy and mass transfer is carried out in relative variables. The statement of the problem is divided into two parts: the initial jet model and the FlowVision large-scale atmospheric model. The lower region, where the initial high-speed jet flows, is calculated using a compressible formulation with the solution of the energy equation with respect to the total enthalpy. This division of the problem into two separate subdomains is necessary in order to correctly carry out the numerical calculation of the initial turbulent jet at high velocity (M > 0.3). The main mathematical dependencies of the model are given. Numerical experiments were carried out using the presented model, experimental data from field tests of the installation for creating artificial clouds were taken for the initial data. A good agreement with the experiment is obtained: in 55% of the calculations carried out, the value of the vertical velocity at a height of 400 m (more than 2 m/s) and the height of the jet rise (more than 600 m) is within an deviation of 30% of the experimental characteristics, and in 30% of the calculations it is completely consistent with the experiment. The results of numerical simulation allow evaluating the possibility of using the high-speed jet method to stimulate artificial updrafts and to create precipitation. The calculations were carried out using FlowVision CFD software on SUSU Tornado supercomputer.
Keywords: artificial clouds, numerical simulation, CFD, artificial precipitation, meteorology, jet, meteotron. -
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
Ключевые слова: viscoelastic fluid model, variable viscosity, Lorentz force, porous channel, oscillatory flow, HPM, heat transfer.
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
-
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
Ключевые слова: coffee berry disease (CBD), Colletotrichum kahawae pathogen, epidemic mathematical model, sensitivity analysis, Shehu transformation, Akbari – Ganji’s method (AGM), Pade approximation method, numerical simulation.
Sensitivity analysis and semi-analytical solution for analyzing the dynamics of coffee berry disease
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 731-753Coffee berry disease (CBD), resulting from the Colletotrichum kahawae fungal pathogen, poses a severe risk to coffee crops worldwide. Focused on coffee berries, it triggers substantial economic losses in regions relying heavily on coffee cultivation. The devastating impact extends beyond agricultural losses, affecting livelihoods and trade economies. Experimental insights into coffee berry disease provide crucial information on its pathogenesis, progression, and potential mitigation strategies for control, offering valuable knowledge to safeguard the global coffee industry. In this paper, we investigated the mathematical model of coffee berry disease, with a focus on the dynamics of the coffee plant and Colletotrichum kahawae pathogen populations, categorized as susceptible, exposed, infected, pathogenic, and recovered (SEIPR) individuals. To address the system of nonlinear differential equations and obtain semi-analytical solution for the coffee berry disease model, a novel analytical approach combining the Shehu transformation, Akbari – Ganji, and Pade approximation method (SAGPM) was utilized. A comparison of analytical results with numerical simulations demonstrates that the novel SAGPM is excellent efficiency and accuracy. Furthermore, the sensitivity analysis of the coffee berry disease model examines the effects of all parameters on the basic reproduction number $R_0$. Moreover, in order to examine the behavior of the model individuals, we varied some parameters in CBD. Through this analysis, we obtained valuable insights into the responses of the coffee berry disease model under various conditions and scenarios. This research offers valuable insights into the utilization of SAGPM and sensitivity analysis for analyzing epidemiological models, providing significant utility for researchers in the field.
-
Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.
Ключевые слова: метапопуляция, связанные системы, случайные возмущения, стохастическая чувствительность, переход «порядок – хаос», модель Рикера.
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
Ключевые слова: Allee effect, prey refuge, predator – prey, eco-epidemiological model, nonlinear incidence rate, local stability, global stability, Hopf bifurcation, transcritical bifurcation.
The impact of ecological mechanisms on stability in an eco-epidemiological model: Allee effect and prey refuge
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 139-169Eco-epidemiological models provide insights into factors influencing disease transmission and host population stability. This study developed two eco-epidemiological models to investigate the impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these mechanisms, while model B did not. Both models featured predator – prey and disease transmission and were analyzed mathematically and via simulation. Model equilibrium states were examined locally and globally under differing parameter combinations representative of environmental scenarios. Model A and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed disease crowding effect and that host persistence is positively associated with refuge habitat, reducing predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical predator death rates impacting prey outcomes. This work provides a valuable framework to minimize transmission given resource availability or demographic alterations, generating testable hypotheses.
-
Формализованная модель принятия решений: учет ценностной мотивации
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 323-338В работе рассмотрены проблемы математического описания деонтологических аспектов, влияющих на поведение ЛПР (лиц, принимающих решения). Предложена методология соотнесения утилитарных (материальных) и деонтологических (ценностных) аспектов при принятии ими решений с учетом их психологических особенностей. Предложена математическая модель совместного учета утилитарных и деонтологических факторов при принятии ЛПР решений в различных ситуациях. Выявлены некоторые закономерности, связанные с этим учетом, приведено их формальное описание. Модель показывает, что существует тенденция постепенного снижения уровня деонтологичности в оценке альтернатив при принятии решений (по сравнению с тем, к чему склоняет внешний мир) к большей утилитарности. Эта тенденция с течением времени начинает влиять на общественное мнение и на отношение общества к моральным нормам, постепенно снижая общий уровень моральности в обществе. Остановить этот процесс можно только путем постоянного и целенаправленного поддержания обществом и государством высокого уровня деонтологичности (идеологическая работа, пропаганда традиционных ценностей, воспитательная работа в школе и т. п.), в противном случае общество с неизбежностью со временем станет утилитарным, ориентирующимся при принятии решений исключительно на материальные факторы.
В дальнейшем планируется использовать разработанный инструментарий для анализа конкретных ситуаций, в том числе для анализа закономерностей цивилизационных циклов: взлета и падения Римской империи, СССР, современной западной цивилизации.
Ключевые слова: принятие решений, деонтологические факторы, моральный выбор, математическая модель, сравнение альтернатив.
Formalized decision-making model: taking into account value motivation
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 323-338The paper considers the problems of mathematical description of deontological aspects influencing the behavior of decision makers. A methodology is proposed for correlating utilitarian (material) and deontological (value) aspects in their decision-making, taking into account their psychological characteristics. A mathematical model is proposed for the joint consideration of utilitarian and deontological factors in decision-making in various situations. Some patterns related to this consideration are identified, and their formal description is given. The model shows that there is a tendency for a gradual decrease in the level of deontology in evaluating alternatives when making decisions (compared to what the outside world inclines to) towards greater utilitarianism. Over time, this trend begins to influence public opinion and society’s attitude to moral norms, gradually reducing the overall level of morality in society. This process can be stopped only by constantly and purposefully maintaining a high level of deontology by society and the state (ideological work, promotion of traditional values, educational work at school, etc.), otherwise society will inevitably become utilitarian over time, focusing exclusively on material factors when making decisions.
In the future, it is planned to use the developed tools for analyzing specific situations, including for analyzing the patterns of civilizational cycles: the rise and fall of the Roman Empire, the USSR, and modern Western civilization).
-
Определение поправочных коэффициентов при количественной оценке костных патологических очагов методом гамма-эмиссионной томографии
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 677-696При обследовании методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ) пациентам с заболеваниями костной системы вводится радиофармпрепарат (РФП), который специфическим образом накапливается в патологических очагах. Количественные оценки накопления РФП в очагах важны для определения стадии заболевания, прогнозирования его течения и разработки персонализированных терапевтических стратегий. Исследования точности количественных оценок обычно проводятся на основе клинических испытаний in vitro с использованием стандартизированного вещественного фантома NEMA IEC с шестью сферами, имитирующими патологические очаги разных размеров. Однако возможности проведения таких многопараметрических экспериментальных измерений ограничены из-за высокойстоимости и лучевой нагрузки на исследователей. В данной работе развит альтернативный подход на основе имитационного компьютерного моделирования in silico с использованием цифрового двойника фантома NEMA IEC. Компьютерные эксперименты могут проводиться без ограничений с разными сценариями. По аналогии с клиническими испытаниями в численном моделировании оценивался коэффициент восстановления (RCmax), равный отношению максимального значения полученного решения в очаге к его точной величине. Условия моделирования были ориентированы на параметры клинических обследований методом ОФЭКТ/КТ с 99mTc пациентов с заболеваниями и поражениями костной системы. Впервые выполнены исследования зависимости RCmax от величины отношения «очаг/фон» и влияния постфильтрации решения. В численных экспериментах были получены краевые артефакты на изображениях очагов, аналогичные тем, которые наблюдались при измерениях на реальном фантоме NEMA IEC и в клинической практике при обследовании пациентов. Краевые артефакты приводят к нестабильности поведения решения в итерационном процессе и к ошибкам в оценке накопления РФП в очагах. Показано, что постфильтрация снижает влияние этих артефактов, обеспечивая стабильное решение. Однако при этом существенно занижаются оценки решения в небольших очагах, поэтому предложено учитывать полученные в данной работе поправочные коэффициенты при количественной оценке активности в очагах диаметром менее 20 мм.
Ключевые слова: количественная однофотонная эмиссионная компьютерная томография, математическое имитационное моделирование, коэффициент восстановления, краевые артефакты.
Determination of post-reconstruction correction factors for quantitative assessment of pathological bone lesions using gamma emission tomography
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 677-696In single-photon emission computed tomography (SPECT), patients with bone disorders receive a radiopharmaceutical (RP) that accumulates selectively in pathological lesions. Accurate quantification of RP uptake plays a critical role in disease staging, prognosis, and the development of personalized treatment strategies. Traditionally, the accuracy of quantitative assessment is evaluated through in vitro clinical trials using the standardized physical NEMA IEC phantom, which contains six spheres simulating lesions of various sizes. However, such experiments are limited by high costs and radiation exposure to researchers. This study proposes an alternative in silico approach based on numerical simulation using a digital twin of the NEMA IEC phantom. The computational framework allows for extensive testing under varying conditions without physical constraints. Analogous to clinical protocols, we calculated the recovery coefficient (RCmax), defined as the ratio of the maximum activity in a lesion to its known true value. The simulation settings were tailored to clinical SPECT/CT protocols involving 99mTc for patients with bone-related diseases. For the first time, we systematically analyzed the impact of lesion-to-background ratios and post-reconstruction filtering on RCmax values. Numerical experiments revealed the presence of edge artifacts in reconstructed lesion images, consistent with those observed in both real NEMA IEC phantom studies and patient scans. These artifacts introduce instability into the iterative reconstruction process and lead to errors in activity quantification. Our results demonstrate that post-filtering helps suppress edge artifacts and stabilizes the solution. However, it also significantly underestimates activity in small lesions. To address this issue, we introduce post-reconstruction correction factors derived from our simulations to improve the accuracy of quantification in lesions smaller than 20 mm in diameter.
-
Мультистабильность для математической модели тритрофической системы на неоднородном ареале
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 923-939Рассматривается пространственно-временная модель тритрофической системы, описывающая взаимодействие жертвы, хищника и суперхищника в среде с неоднородным распределением ресурса. Учитываются всеядность суперхищника (Intraguild Predation, IGP), диффузия и направленная миграция (таксис), который моделируется с помощью логарифмической функции от ресурса и плотности жертвы. Основное внимание уделено анализу мультистабильности системы и роли косимметрии в формировании континуальных семейств стационарных решений. С использованием численно-аналитического подхода изучаются пространственно-однородные и неоднородные стационарные решения. Установлено, что при выполнении дополнительных соотношений между параметрами, характеризующими локальное взаимодействие хищников, и коэффициентами диффузии система обладает косимметрией, что приводит к возникновению семейства устойчивых стационарных решений, пропорциональных функции ресурса. Показано, что косимметрия не зависит от функции ресурса в случае неоднородной среды. Проведено исследование устойчивости стационарных распределений с помощью спектрального метода. Нарушение условий косимметрии приводит к разрушению семейства и появлению изолированных стационарных состояний, а также к длительным переходным процессам, отражающим память системы об исчезнувшем семействе. В зависимости от начальных условий и параметров в системе реализуются переходы к режимам с одним хищником (выживание хищника или суперхищника) или к сосуществованию хищников. Численные эксперименты на основе метода прямых (разностная схема по пространственной переменной и метод Рунге – Кутты для интегрирования по времени) подтверждают мультистабильность системы и иллюстрируют исчезновение семейства решений при разрушении косимметрии.
Ключевые слова: математическая экология, диффузия, таксис, теория косимметрии, жертва – хищник – суперхищник.
Multistability for a mathematical model of a tritrophic system in a heterogeneous habitat
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 923-939We consider a spatiotemporal model of a tritrophic system describing the interaction between prey, predator, and superpredator in an environment with nonuniform resource distribution. The model incorporates superpredator omnivory (Intraguild Predation, IGP), diffusion, and directed migration (taxis), the latter modeled using a logarithmic function of resource availability and prey density. The primary focus is on analyzing the multistability of the system and the role of cosymmetry in the formation of continuous families of steady-state solutions. Using a numerical-analytical approach, we study both spatially homogeneous and inhomogeneous steady-state solutions. It is established that under additional relations between the parameters governing local predator interactions and diffusion coefficients, the system exhibits cosymmetry, leading to the emergence of a family of stable steady-state solutions proportional to the resource function. We demonstrate that the cosymmetry is independent of the resource function in the case of a heterogeneous environment. The stability of stationary distributions is investigated using spectral methods. Violation of the cosymmetry conditions results in the breakdown of the solution family and the emergence of isolated equilibria, as well as prolonged transient dynamics reflecting the system’s “memory” of the vanished states. Depending on initial conditions and parameters, the system exhibits transitions to single-predator regimes (survival of either the predator or superpredator) or predator coexistence. Numerical experiments based on the method of lines, which involves finite difference discretization in space and Runge –Kutta integration in time, confirm the system’s multistability and illustrate the disappearance of solution families when cosymmetry is broken.
-
Моделирование начального периода развития инфекции ВИЧ-1 в лимфоузле на основе дифференциальных уравнений с запаздыванием
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1181-1203Представлена математическая модель, описывающая динамику инфекции ВИЧ-1 в отдельно взятом лимфоузле в начальный период развития инфекции. В рамках модели инфицирование индивидуума задается неотрицательной финитной функцией, описывающей скорость поступления первоначальных вирусных частиц в лимфоузел. Уравнения модели построены с учетом следующих факторов: 1) взаимодействие вирусных частиц с наивными Т-лимфоцитами CD4+, находящимися в различных фазах клеточного цикла; 2) контактное взаимодействие между размножающимися наивными Т-лимфоцитами CD4+ и инфицированными Т-лимфоцитами CD4+, производящими вирусные частицы. Спецификой контактных межклеточных взаимодействий является образование комплексов, состоящих из пар указанных клеток. Длительности существования комплексов задаются функциями распределения на конечных промежутках времени. Модель записана в форме высокоразмерной системы нелинейных дифференциальных уравнений с запаздыванием, включая два уравнения с распределенным запаздыванием, и дополнена неотрицательными начальными данными. При отсутствии инфекции ВИЧ-1 модель сводится к четырем дифференциальным уравнениям с запаздыванием, описывающим численность наивных Т-лимфоцитов CD4+ в различных фазах клеточного цикла. Показана глобальная разрешимость модели (существование и единственность решения на полуоси) и установлена неотрицательность компонент решения. Для проведения вычислительных экспериментов с моделью разработан алгоритм численного решения используемой системы дифференциальных уравнений на основе полунеявной схемы Эйлера для случая равномерного распределения длительностей существования комплексов. Представлены результаты вычислительных экспериментов, направленных на приближение численного решения модели к описанию кинетики развития инфекции ВИЧ-1 в ее острой фазе, включая фазу эклипса. В качестве наблюдаемой использована переменная, описывающая количество вирусных частиц на один миллилитр крови на 10–12-е сутки после начала острой инфекции. Численно исследована динамика наблюдаемой переменной в зависимости от вариации параметров модели, отражающих закономерности формирования комплексов и образования клеток, производящих вирусные частицы. Показана возможность затухания инфекции ВИЧ-1 в лимфоузле при определенных значениях некоторых из параметров модели.
Ключевые слова: инфекция ВИЧ-1, лимфатический узел, наивные Т-лимфоциты CD4+, дифференциальные уравнения с запаздыванием, вычислительный эксперимент.
Modeling the initial period of HIV-1 infection spread in the lymph node based on delay differential equations
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1181-1203A mathematical model describing the dynamics of HIV-1 infection in a single lymph node during the initial period of infection development is presented. Within the framework of the model, the infection of an individual is set by a nonnegative finite function describing the rate of entry of the initial viral particles into the lymph node. The equations of the model are derived with consideration of two factors: 1) the interaction of viral particles with naive CD4+ T lymphocytes in various phases of the cell cycle; 2) contact interaction between multiplying naive CD4+ T lymphocytes and infected CD4+ T lymphocytes producing viral particles. The specific feature of intercellular contact interactions is the formation of complexes consisting of pairs of these cells. The duration of the complexes’ existence is determined by the distribution functions over finite time intervals. The model is presented as a high-dimensional system of nonlinear delay differential equations, including two equations with distributed delay, and is supplemented with non-negative initial data. In the absence of HIV-1 infection, the model is reduced to four delay differential equations describing the number of naive CD4+ T-lymphocytes in different phases of the cell cycle. The global solvability of the model (the existence and uniqueness of the solution on the semi-axis) is determined, and the non-negativity of the solution components is established. To carry out computational experiments with the model, an algorithm for numerically solving the used system of differential equations are developed based on the semi-implicit Euler scheme for the case of uniform distribution of durations of the complexes existence. The results of computational experiments aimed at approximation the numerical solution of the model to describing the kinetics of HIV-1 infection spread in its acute phase, including the eclipse phase, are presented. The variable used as the observable is the variable describing the number of viral particles per milliliter of blood on days 10–12 after the onset of acute infection. The dynamics of the observable variable is numerically studied depending on the variation of the model parameters reflecting the patterns of complex formation and the formation of cells producing viral particles. The possibility of attenuation of HIV-1 infection in the lymph node at certain values of some of the model parameters is shown.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





