Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование точности метода решеточных уравнений Больцмана при расчете распространения акустических волн
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1069-1081В статье проводится систематическое исследование возможностей метода решеточных уравнений Больцмана (lattice Boltzmann method, LBM или РУБ) для описания распространения акустических волн. Рассмотрена задача о распространении возмущений от точечного гармонического источника акустических возмущений в неограниченном пространстве как в неподвижной среде (число Маха $M=0$), так и при наличии набегающего потока (число Маха $M=0{,}2$). Обе рассмотренные задачи имеют аналитическое решение в приближении линейной акустики, что позволяет количественно оценить точность численного метода.
Численная реализация осуществлена с использованием двумерной модели скоростей D2Q9 и оператора столкновений Бхатнагара – Гросса – Крука (BGK). Источник колебаний задавался согласно схеме Gou, а возникающий от источника паразитный шум в моментах старших порядков убирался за счет использования процедуры регуляризации функций распределения. Для минимизации отражений от границ расчетной области использовался гибридный подход, основанный на совместном использовании характеристических граничных условий на основе инвариантов Римана и поглощающих PML-слоев (perfectly matched layer) с параболическим профилем затухания.
В ходе работы проведен детальный анализ влияния вычислительных параметров метода на точность расчета. Исследована зависимость погрешности от толщины PML-слоя ($L_{\text{PML}}^{}$) и максимального коэффициента демпфирования ($\sigma_{\max}^{}$), безразмерной амплитуды источника ($Q'_0$) и шага расчетной сетки. Показано, что метод РУБ применим для моделирования распространения акустических волн и обладает вторым порядком точности. Установлено, что для достижения высокой точности расчета (относительная погрешность давления — не более $1\,\%$) достаточно пространственного разрешения в $20$ точек на длину волны ($\lambda$). Определены минимальные эффективные параметры PML-слоя: $\sigma_{\max}^{}\geqslant 0{,}02$ и $L_{\text{PML}}^{} \geqslant 2\lambda$, обеспечивающие отсутствие отражения от границ расчетной области. Также продемонстрировано, что при амплитудах источника $Q_0' \geqslant 0{,}1$ влияние нелинейных эффектов становится существенным по сравнению с другими источниками погрешности.
Ключевые слова: решеточные уравнения Больцмана (РУБ), аэроакустика, численное моделирование, регуляризация, PML-слой, характеристические граничные условия.
Investigation of the accuracy of the lattice Boltzmann method in calculating acoustic wave propagation
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1069-1081The article presents a systematic investigation of the capabilities of the lattice Boltzmann method (LBM) for modeling the propagation of acoustic waves. The study considers the problem of wave propagation from a point harmonic source in an unbounded domain, both in a quiescent medium (Mach number $M=0$) and in the presence of a uniform mean flow ($M=0.2$). Both scenarios admit analytical solutions within the framework of linear acoustics, allowing for a quantitative assessment of the accuracy of the numerical method.
The numerical implementation employs the two-dimensional D2Q9 velocity model and the Bhatnagar – Gross – Krook (BGK) collision operator. The oscillatory source is modeled using Gou’s scheme, while spurious high-order moment noise generated by the source is suppressed via a regularization procedure applied to the distribution functions. To minimize wave reflections from the boundaries of the computational domain, a hybrid approach is used, combining characteristic boundary conditions based on Riemann invariants with perfectly matched layers (PML) featuring a parabolic damping profile.
A detailed analysis is conducted to assess the influence of computational parameters on the accuracy of the method. The dependence of the error on the PML thickness ($L_{\text{PML}}^{}$) and the maximum damping coefficient ($\sigma_{\max}^{}$), the dimensionless source amplitude ($Q'_0$), and the grid resolution is thoroughly examined. The results demonstrate that the LBM is suitable for simulating acoustic wave propagation and exhibits second-order accuracy. It is shown that achieving high accuracy (relative pressure error below $1\,\%$) requires a spatial resolution of at least $20$ grid points per wavelength ($\lambda$). The minimal effective PML parameters ensuring negligible boundary reflections are identified as $\sigma_{\max}^{}\geqslant 0.02$ and $L_{\text{PML}}^{} \geqslant 2\lambda$. Additionally, it is shown that for source amplitudes $Q_0' \geqslant 0.1$, nonlinear effects become significant compared to other sources of error.
-
Высокопроизводительные вычисления в моделировании крови
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 917-941Приведен обзор методов моделирования движения и реологических свойств крови как суспензии взвешенных частиц. Рассмотрены методы граничных интегральных уравнений, решеточных уравнений Больцмана, конечных элементов на подвижных сетках, диссипативной динамики частиц, а также агентные модели. Приведен анализ применения этих методов при расчетах на высокопроизводительных системах различной архитектуры.
Ключевые слова: кровь, гемодинамика, неньютоновская жидкость, эритроциты, высокопроизводительные вычисления.
High Performance Computing for Blood Modeling
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 917-941Просмотров за год: 2. Цитирований: 3 (РИНЦ).Methods for modeling blood flow and its rheological properties are reviewed. Blood is considered as a particle suspencion. The methods are boundary integral equation method (BIEM), lattice Boltzmann (LBM), finite elements on dynamic mesh, dissipative particle dynamics (DPD) and agent based modeling. The analysis of these methods’ applications on high-performance systems with various architectures is presented.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





