Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Автоматизированная проверка соответствия соглашений об обработке данных регламенту по защите данных
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1667-1685В современном мире соблюдение нормативных требований по защите данных, таких как GDPR, является ключевым для организаций. Другой важной проблемой, выявленной при анализе, является то, что соблюдение осложняется сложностью правовых документов и постоянными изменениями в регулировании. В данной статье описываются способы, с помощью которых NLP (обработка естественного языка) способствует упрощению соблюдения GDPR путем автоматического сканирования на соответствие, оценки политик конфиденциальности и повышения уровня прозрачности. Работа не ограничивается исследованием применения NLP для работы с политиками конфиденциальности и улучшения понимания обмена данными с третьими сторонами, но также проводит предварительные исследования для оценки различий между несколькими моделями NLP. В статье описывается реализация и исполнение моделей для выявления той, которая демонстрирует наилучшую производительность по эффективности и скорости автоматизации процесса проверки соответствия и анализа политики конфиденциальности. Кроме того, в исследовании обсуждаются возможности использования автоматических инструментов и анализа данных для соблюдения GDPR, например, создание машиночитаемых моделей, которые помогают в оценке соответствия. Среди моделей, оцененных в нашем исследовании, SBERT показала лучшие результаты на уровне политики с точностью 0,57, прецизионностью 0,78, полнотой 0,83 и F1-метрикой 0,80. Модель BERT продемонстрировала наивысшую производительность на уровне предложений, достигнув точности 0,63, прецизионности 0,70, полноты 0,50 и F1-метрики 0,55. Таким образом, данная статья подчеркивает важность NLP в помощи организациям преодолеть трудности соблюдения GDPR, создавая дорожную карту к более ориентированному на клиента режиму защиты данных. В этом отношении, сравнивая предварительные исследования и демонстрируя производительность лучших моделей, работа способствует усилению мер по соблюдению и защите прав личности в киберпространстве.
Ключевые слова: аудит соответствия, NLP (обработка естественного языка), DPA (соглашение об обработке данных), GDPR (общий регламент по защите данных), конфиденциальность, SBERT, BERT, GPT.
NLP-based automated compliance checking of data processing agreements against General Data Protection Regulation
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1667-1685As it stands in the contemporary world, compliance with regulations concerning data protection such as GDPR is central to organizations. Another important issue analysis identified is the fact that compliance is hampered by the fact that legal documents are often complex and that regulations are ever changing. This paper aims to describe the ways in which NLP aids in keeping GDPR compliance effortless through automated scanning for compliance, evaluating privacy policies, and increasing the level of transparency. The work does not only limit to exploring the application of NLP for dealing with the privacy policies and facilitate better understanding of the third-party data sharing but also proceed to perform the preliminary studies to evaluate the difference of several NLP models. They implement and execute the models to distinguish the one that performs the best based on the efficiency and speed at which it automates the process of compliance verification and analyzing the privacy policy. Moreover, some of the topics discussed in the research deal with the possibility of using automatic tools and data analysis to GDPR, for instance, generation of the machine readable models that assist in evaluation of compliance. Among the evaluated models from our studies, SBERT performed best at the policy level with an accuracy of 0.57, precision of 0.78, recall of 0.83, and F1-score of 0.80. BERT showed the highest performance at the sentence level, achieving an accuracy of 0.63, precision of 0.70, recall of 0.50, and F1-score of 0.55. Therefore, this paper emphasizes the importance of NLP to help organizations overcome the difficulties of GDPR compliance, create a roadmap to a more client-oriented data protection regime. In this regard, by comparing preliminary studies done in the test and showing the performance of the better model, it helps enhance the measures taken in compliance and fosters the defense of individual rights in the cyberspace.
-
Моделирование влияния распространения эпидемии и карантина на экономику
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 339-363Эпидемии серьезно дестабилизируют экономику, снижая производительность, ослабляя потребительскую активность и перегружая общественные ресурсы, что часто приводит к экономическим кризисам. Пандемия COVID-19 продемонстрировала ключевую роль нематериальных мер, таких как карантин, в сдерживании распространения инфекционных заболеваний. Данное исследование изучает, как развитие эпидемии и введение карантинных мер влияют на экономическое благополучие населения. С помощью компартментальных моделей на основе обыкновенных дифференциальных уравнений (ОДУ) анализируется взаимосвязь между динамикой заболевания и экономическими последствиями, особенно фокусируясь на том, как различные строгости карантина воздействуют как на распространение болезни, так и на благосостояние населения. Результаты показывают, что эпидемии наносят значительный экономический ущерб, однако своевременные и строгие карантинные меры могут снизить нагрузку на систему здравоохранения, резко уменьшая пик заражений и замедляя развитие эпидемии. Тем не менее, стратегически продуманное ослабление карантина не менее важно для предотвращения повторных вспышек. Исследование выявляет ключевые эпидемиологические пороговые значения, такие как скорость передачи, уровень выздоровления и базовое репродуктивное число $(\mathfrak{R}_0)$, которые определяют эффективность карантина. Аналитически определяется оптимальная доля изолированных лиц, необходимая для минимизации общего числа заражений в условиях постоянного иммунитета. С экономической точки зрения, влияние карантина оценивается через динамику благосостояния населения: показано, что экономические последствия зависят от доли изолированных, но сохраняющих экономическую активность граждан. Чем выше эта доля, тем лучше сохраняется благосостояние даже при фиксированных эпидемиологических параметрах. Эти выводы предоставляют властям практические рекомендации для разработки сбалансированных карантинных стратегий, способных сдерживать распространение болезней и одновременно защищать экономическую стабильность в будущих кризисах.
Modeling the impact of epidemic spread and lockdown on economy
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 339-363Epidemics severely destabilize economies by reducing productivity, weakening consumer spending, and overwhelming public infrastructure, often culminating in economic recessions. The COVID-19 pandemic underscored the critical role of nonpharmaceutical interventions, such as lockdowns, in containing infectious disease transmission. This study investigates how the progression of epidemics and the implementation of lockdown policies shape the economic well-being of populations. By integrating compartmental ordinary differential equation (ODE) models, the research analyzes the interplay between epidemic dynamics and economic outcomes, particularly focusing on how varying lockdown intensities influence both disease spread and population wealth. Findings reveal that epidemics inflict significant economic damage, but timely and stringent lockdowns can mitigate healthcare system overload by sharply reducing infection peaks and delaying the epidemic’s trajectory. However, carefully timed lockdown relaxation is equally vital to prevent resurgent outbreaks. The study identifies key epidemiological thresholds—such as transmission rates, recovery rates, and the basic reproduction number $(\mathfrak{R}0)$ — that determine the effectiveness of lockdowns. Analytically, it pinpoints the optimal proportion of isolated individuals required to minimize total infections in scenarios where permanent immunity is assumed. Economically, the analysis quantifies lockdown impacts by tracking population wealth, demonstrating that economic outcomes depend heavily on the fraction of isolated individuals who remain economically productive. Higher proportions of productive individuals during lockdowns correlate with better wealth retention, even under fixed epidemic conditions. These insights equip policymakers with actionable frameworks to design balanced lockdown strategies that curb disease spread while safeguarding economic stability during future health crises.
-
Биоматематическая система методов описания нуклеиновых кислот
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 417-434Статья посвящена применению методов математического анализа, поиска паттернов и изучения состава нуклеотидов в последовательностях ДНК на геномном уровне. Изложены новые методы математической биологии, которые позволили обнаружить и отобразить скрытую упорядоченность генетических нуклеотидных последовательностей, находящихся в клетках живых организмов. Исследования основаны на работах по алгебраической биологии доктора физико-математических наук С. В. Петухова, которым впервые были введены и обоснованы новые алгебры и гиперкомплексные числовые системы, описывающие генетические явления. В данной работе описана новая фаза развития матричных методов в генетике для исследования свойств нуклеотидных последовательностей (и их физико-химических параметров), построенная на принципах конечной геометрии. Целью исследования является демонстрация возможностей новых алгоритмов и обсуждение обнаруженных свойств генетических молекул ДНК и РНК. Исследование включает три этапа: параметризация, масштабирование и визуализация. Параметризация — определение учитываемых параметров, которые основаны на структурных и физико-химических свойствах нуклеотидов как элементарных составных частей генома. Масштабирование играет роль «фокусировки» и позволяет исследовать генетические структуры в различных масштабах. Визуализация включает выбор осей координатной системы и способа визуального отображения. Представленные в работе алгоритмы выдвигаются на роль расширенного инструментария для развития научно-исследовательского программного обеспечения анализа длинных нуклеотидных последовательностей с возможностью отображения геномов в параметрических пространствах различной размерности. Одним из значимых результатов исследования является то, что были получены новые биологически интерпретируемые критерии классификации геномов различных живых организмов для выявления межвидовых взаимосвязей. Новая концепция позволяет визуально и численно оценить вариативность физико-химических параметров нуклеотидных последовательностей. Эта концепция также позволяет обосновать связь параметров молекул ДНК и РНК с фрактальными геометрическими мозаиками, обнаруживает упорядоченность и симметрии полинуклеотидов и их помехоустойчивость. Полученные результаты стали обоснованием для введения новых научных терминов: «генометрия» как методология вычислительных стратегий и «генометрика» как конкретные параметры того или иного генома или нуклеотидной последовательности. В связи с результатами исследования затронуты вопросы биосемиотики и уровни иерархичности организации живой материи.
Ключевые слова: генетические алгоритмы, вариативность, многомерный анализ данных, физико-химические параметры нуклеиновых кислот, конечная геометрия.
Biomathematical system of the nucleic acids description
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 417-434The article is devoted to the application of various methods of mathematical analysis, search for patterns and studying the composition of nucleotides in DNA sequences at the genomic level. New methods of mathematical biology that made it possible to detect and visualize the hidden ordering of genetic nucleotide sequences located in the chromosomes of cells of living organisms described. The research was based on the work on algebraic biology of the doctor of physical and mathematical sciences S. V. Petukhov, who first introduced and justified new algebras and hypercomplex numerical systems describing genetic phenomena. This paper describes a new phase in the development of matrix methods in genetics for studying the properties of nucleotide sequences (and their physicochemical parameters), built on the principles of finite geometry. The aim of the study is to demonstrate the capabilities of new algorithms and discuss the discovered properties of genetic DNA and RNA molecules. The study includes three stages: parameterization, scaling, and visualization. Parametrization is the determination of the parameters taken into account, which are based on the structural and physicochemical properties of nucleotides as elementary components of the genome. Scaling plays the role of “focusing” and allows you to explore genetic structures at various scales. Visualization includes the selection of the axes of the coordinate system and the method of visual display. The algorithms presented in this work are put forward as a new toolkit for the development of research software for the analysis of long nucleotide sequences with the ability to display genomes in parametric spaces of various dimensions. One of the significant results of the study is that new criteria were obtained for the classification of the genomes of various living organisms to identify interspecific relationships. The new concept allows visually and numerically assessing the variability of the physicochemical parameters of nucleotide sequences. This concept also allows one to substantiate the relationship between the parameters of DNA and RNA molecules with fractal geometric mosaics, reveals the ordering and symmetry of polynucleotides, as well as their noise immunity. The results obtained justified the introduction of new terms: “genometry” as a methodology of computational strategies and “genometrica” as specific parameters of a particular genome or nucleotide sequence. In connection with the results obtained, biosemiotics and hierarchical levels of organization of living matter are raised.
-
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
Ключевые слова: пиролиз пропана, математическая модель, химическая кинетика, анализ чувствительности, анализ идентифицируемости.
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
-
Математические особенности индивидуального дозиметрического планирования радиойодтерапии на основе фармакокинетического моделирования
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 773-784При определении лечебных поглощенных доз в процессе радиойодтерапии в отечественной медицине все чаще используется метод индивидуального дозиметрического планирования (ИДП). Однако для успешной реализации данного метода необходимо наличие соответствующего программного обеспечения, позволяющего произвести моделирование фармакокинетики радиойода в организме пациента и рассчитать необходимую терапевтическую активность радиофармацевтического лекарственного препарата (РФЛП) для достижения в щитовидной железе запланированной лечебной поглощенной дозы.
Цель работы — разработка программного комплекса фармакокинетического моделирования и расчета индивидуальных поглощенных доз при радиойодтерапии на основе пятикамерной модели кинетики радиойода с применением двух математических методов оптимизации. Работа основана на принципах и методах фармакокинетики РФЛП (камерное моделирование). Для нахождения минимума функционала невязки при идентификации значений транспортных констант модели были использованы метод Хука – Дживса и метод имитации отжига. Расчет дозиметрических характеристик и вводимой терапевтической активности основан на методике расчета поглощенных доз через найденные в процессе моделирования функции активностей радиойода в камерах. Для идентификации параметров модели использованы результаты радиометрии щитовидной железы и мочи пациентов с введенным в организм радиойодом.
Разработан программный комплекс моделирования кинетики радиойода при его пероральном поступлении в организм. Для пациентов с диффузным токсическим зобом идентифицированы транспортные константы модели и рассчитаны индивидуальные фармакокинетические и дозиметрические характеристики (периоды полувыведения, максимальная активность в щитовидной железе и время ее достижения, поглощенные дозы на критические органы и ткани, вводимая терапевтическая активность). Получены и проанализированы зависимости «активность – время» для всех камер модели. Проведен сравнительный анализ фармакокинетических и дозиметрических характеристик, рассчитанных в рамках двух математических методов оптимизации. Осуществлена оценка stunning-эффекта и его вклад в погрешности расчета поглощенных доз. Из сравнительного анализа рассчитанных в рамках двух методов оптимизации фармакокинетических и дозиметрических характеристик следует, что использование более сложного математического метода имитации отжига в программном комплексе не приводит к существенным изменениям в значениях характеристик по сравнению с простым методом Хука – Дживса. Погрешности расчета поглощенных доз в рамках этих математических методов оптимизации не превышают вариации значений поглощенных доз от stunning-эффекта.
Ключевые слова: математическое моделирование, диффузный токсический зоб, индивидуальное дозиметрическое планирование, щитовидная железа, радиойод.
Mathematical features of individual dosimetric planning of radioiodotherapy based on pharmacokinetic modeling
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 773-784When determining therapeutic absorbed doses in the process of radioiodine therapy, the method of individual dosimetric planning is increasingly used in Russian medicine. However, for the successful implementation of this method, it is necessary to have appropriate software that allows modeling the pharmacokinetics of radioiodine in the patient’s body and calculate the necessary therapeutic activity of a radiopharmaceutical drug to achieve the planned therapeutic absorbed dose in the thyroid gland.
Purpose of the work: development of a software package for pharmacokinetic modeling and calculation of individual absorbed doses in radioiodine therapy based on a five-chamber model of radioiodine kinetics using two mathematical optimization methods. The work is based on the principles and methods of RFLP pharmacokinetics (chamber modeling). To find the minimum of the residual functional in identifying the values of the transport constants of the model, the Hook – Jeeves method and the simulated annealing method were used. Calculation of dosimetric characteristics and administered therapeutic activity is based on the method of calculating absorbed doses using the functions of radioiodine activity in the chambers found during modeling. To identify the parameters of the model, the results of radiometry of the thyroid gland and urine of patients with radioiodine introduced into the body were used.
A software package for modeling the kinetics of radioiodine during its oral intake has been developed. For patients with diffuse toxic goiter, the transport constants of the model were identified and individual pharmacokinetic and dosimetric characteristics (elimination half-lives, maximum thyroid activity and time to reach it, absorbed doses to critical organs and tissues, administered therapeutic activity) were calculated. The activity-time relationships for all cameras in the model are obtained and analyzed. A comparative analysis of the calculated pharmacokinetic and dosimetric characteristics calculated using two mathematical optimization methods was performed. Evaluation completed the stunning-effect and its contribution to the errors in calculating absorbed doses. From a comparative analysis of the pharmacokinetic and dosimetric characteristics calculated in the framework of two optimization methods, it follows that the use of a more complex mathematical method for simulating annealing in a software package does not lead to significant changes in the values of the characteristics compared to the simple Hook – Jeeves method. Errors in calculating absorbed doses in the framework of these mathematical optimization methods do not exceed the spread of absorbed dose values from the stunning-effect.
-
Модельное исследование процессов газообмена в фитопланктоне под влиянием фотосинтетических процессов и метаболизма
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 963-985В жизнедеятельности фитопланктона, как и любой живой системы, огромное значение имеет динамика различных газообразных веществ. Для водных растительных сообществ наиболее показательным является преобразование кислорода и углекислого газа. Эта динамика важна для глобального соотношения кислорода и углекислоты в атмосфере Земли. Цель работы состоит в исследовании средствами математического моделирования роли газообмена в жизнедеятельности водных растительных организмов, а именно фитопланктона. В работе предложена серия математических моделей динамики кислорода и углекислоты в организме (клетке) фитопланктона. Серия моделей построена по нарастающей степени сложности и количества моделируемых процессов. Вначале рассматривается простейшая модель только динамики газов, затем происходит переход к моделям со взаимодействием и взаимовлиянием газов на формирование и динамику энергоемких веществ и, через них, на ростовые процессы в растительном организме.
В качестве основных процессов, сопряженных с производством и потреблением кислорода и углекислого газа, рассматриваются фотосинтез и дыхание. Эти два во многом взаимообратных по отношению к газодинамике явления лежат в основе моделей. В моделях исследуются свойства решений: равновесия и их устойчивость, динамические свойства решений. Выявлены различные виды равновесной устойчивости, возможные сложные нелинейные динамики. Эти свойства позволяют лучше ориентироваться при выборе модели для описания процессов с известным набором данных и сформулированными целями моделирования. Приведен пример сравнения эксперимента с его модельным описанием.
Относительно динамики концентраций энергоемких веществ и плотности биомассы модели ориентированы на ростовые процессы организмов и продукционные процессы в популяциях и сообществах. Это является следующей цельюмо делирования — связать газодинамику по кислороду и углекислому газу с обменными процессами в растительных организмах. В дальнейшем модельные конструкции будут применены к анализу поведения экосистем при изменении среды обитания, в том числе по содержаниюгаз ообразных веществ.
Model study of gas exchange processes in phytoplankton under the influence of photosynthetic processes and metabolism
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 963-985The dynamics of various gaseous substances is of great importance in the vital activity of phytoplankton. The dynamics of oxygen and carbon dioxide are the most indicative for aquatic plant communities. These dynamics are important for the global ratio of oxygen and carbon dioxide in the Earth’s atmosphere. The goal of the work is to use the mathematical modeling to study the role of oxygen and carbon dioxide in the life of aquatic plant organisms, in particular, the phytoplankton. The series of mathematical models of the dynamics of oxygen and carbon dioxide in the phytoplankton body are proposed. The series of models are built according to the increasing degree of complexity and the number of modeled processes. At first, the simplest model of only gas dynamics is considered, then there is a transition to models with the interaction and mutual influence of gases on the formation and dynamics of energy-intensive substances and on growth processes in the plant organism. Photosynthesis and respiration are considered as the basis of the models. The models study the properties of solutions: equilibrium solutions and their stability, dynamic properties of solutions. Various types of equilibrium stability, possible complex non-linear dynamics have been identified. These properties allow better orientation when choosing a model to describe processes with a known set of data and formulated modeling goals. An example of comparing an experiment with its model description is given. The next goal of modeling — to link gas dynamics for oxygen and carbon dioxide with metabolic processes in plant organisms. In the future, model designs will be applied to the analysis of ecosystem behavior when the habitat changes, including the content of gaseous substances.
-
Компьютерное моделирование динамики валового регионального продукта: сравнительный анализ нейросетевых моделей
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1219-1236Анализ экономических показателей региона играет важную роль в управлении и планировании развития, при этом валовой региональный продукт (ВРП) является одним из ключевых индикаторов экономической деятельности. Применение искусственного интеллекта, в том числе нейросетевых технологий, позволяет значительно повысить точность и надежность прогнозов экономических процессов. В данном исследовании сравниваются три модели нейросетевых алгоритмов для прогнозирования ВРП одного из типичных регионов РФ — Удмуртской Республики — на основе временных рядов за период с 2000 по 2023 год. В качестве моделей выбраны нейронная сеть с алгоритмом летучей мыши (BA-LSTM), модель нейронной сети обратного распространения ошибки, оптимизированная с помощью генетического алгоритма (GA-BPNN), и нейросетевая модель Элмана, оптимизированная алгоритмом роя частиц (PSO-Elman). В ходе исследования были выполнены такие этапы нейросетевого моделирования, как подготовка исходных данных, обучение моделей и их сравнительный анализ по показателям точности и качества прогнозов. Такой подход позволяет оценить преимущества и недостатки каждой модели в контексте прогнозирования ВРП, а также определить наиболее перспективные направления для дальнейших исследований. Использование современных нейросетевых методов открывает новые возможности для автоматизации анализа региональной экономики и повышения качества прогнозных оценок, что особенно актуально при ограниченных данных и для оперативного принятия решений. В исследовании в качестве входных данных для прогнозирования ВРП используются такие факторы, как величина производственного капитала, среднегодовая численность трудовых ресурсов, доля продукции высокотехнологичных и наукоемких отраслей в ВРП, а также показатель, учитывающий инфляцию. Высокая точность прогнозов, достигнутая в результате включения этих факторов в нейросетевые модели, подтверждает наличие сильной связи между этими факторами и ВРП. Результаты исследования показали высокую точность нейросетевой модели BA-LSTM на валидационной выборке: коэффициент детерминации составил 0,82, средняя абсолютная процентная ошибка — 4,19%. Качество и надежность этой модели свидетельствуют о ее способности эффективно предсказы- вать динамику ВРП. В прогнозном периоде до 2030 года в Удмуртской Республике ожидается ежегодное увеличение ВРП +4,6% в текущих ценах или +2,5% в сопоставимых ценах 2023 года. К 2030 году прогнозируется ВРП на уровне 1264,5 млрд руб.
Ключевые слова: валовой региональный продукт (ВРП), нейросетевые модели, нейронная сеть BA-LSTM, нейронная сеть GA-BPNN, нейронная сеть PSO-Elman.
Computer modeling of the gross regional product dynamics: a comparative analysis of neural network models
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1219-1236Analysis of regional economic indicators plays a crucial role in management and development planning, with Gross Regional Product (GRP) serving as one of the key indicators of economic activity. The application of artificial intelligence, including neural network technologies, enables significant improvements in the accuracy and reliability of forecasts of economic processes. This study compares three neural network algorithm models for predicting the GRP of a typical region of the Russian Federation — the Udmurt Republic — based on time series data from 2000 to 2023. The selected models include a neural network with the Bat Algorithm (BA-LSTM), a neural network model based on backpropagation error optimized with a Genetic Algorithm (GA-BPNN), and a neural network model of Elman optimized using the Particle Swarm Optimization algorithm (PSO-Elman). The research involved stages of neural network modeling such as data preprocessing, training model, and comparative analysis based on accuracy and forecast quality metrics. This approach allows for evaluating the advantages and limitations of each model in the context of GRP forecasting, as well as identifying the most promising directions for further research. The utilization of modern neural network methods opens new opportunities for automating regional economic analysis and improving the quality of forecast assessments, which is especially relevant when data are limited and for rapid decision-making. The study uses factors such as the amount of production capital, the average annual number of labor resources, the share of high-tech and knowledge-intensive industries in GRP, and an inflation indicator as input data for predicting GRP. The high accuracy of the predictions achieved by including these factors in the neural network models confirms the strong correlation between these factors and GRP. The results demonstrate the exceptional accuracy of the BA-LSTM neural network model on validation data: the coefficient of determination was 0.82, and the mean absolute percentage error was 4.19%. The high performance and reliability of this model confirm its capacity to predict effectively the dynamics of the GRP. During the forecast period up to 2030, the Udmurt Republic is expected to experience an annual increase in Gross Regional Product (GRP) of +4.6% in current prices or +2.5% in comparable 2023 prices. By 2030, the GRP is projected to reach 1264.5 billion rubles.
-
Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.
Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.
Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.
Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.
Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.
Ключевые слова: методы машинного обучения, устойчивое развитие, Арктическая зона РФ, экономические критерии, Полярный индекс компаний.
Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.
-
Описание изгибов протофиламентов микротрубочек
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 435-443Работа посвящена анализу конформационных изменений в димерах и тетрамерах тубулина, в частности оценке изгиба составленных из них протофиламентов. В работе рассмотрено три недавно использованных подхода для оценки изгиба тубулиновых протофиламентов: (1) измерение угла между вектором, проходящим через H7 спирали в $\alpha$- и $\beta$-мономерах тубулина в прямой структуре, и таким же вектором в изогнутой структуре тубулина; (2) измерение угла между вектором, соединяющим центры масс субъединицы и связанного с ней ГТФ- нуклеотида, и вектором, связывающим центры масс того же нуклеотида и соседней субъединицы тубулина; (3) измерение трех углов вращения субъединицы тубулина в изогнутой структуре димера тубулина относительно аналогичной субъединицы в прямой структуре димера тубулина. Приведены рассчитанные в соответствии с описанными тремя метриками количественные оценки углов на внутри- и междимерных интерфейсах тубулина в опубликованных кристаллических структурах. Внутридимерные углы тубулина в одной структуре, измеренные по методу (3), как и измерения этим методом внутридимерных углов в разных структурах, были более схожи, чем при использовании других методов, что говорит о меньшей чувствительности метода к локальным изменениям конформации тубулина, и характеризует метод в целом как более устойчивый. Измерения кривизны тубулина по углу между H7-спиралями дают несколько заниженную оценку удельной кривизны тубулина на димер, а метод (2), хотя на первый взгляд и дает цифры, также довольно хорошо совпадающие с оценками криоэлектронной микроскопии, существенно завышает углы даже на прямых структурах. Для структур тетрамеров тубулина в комплексе с белком статмином углы изгиба, рассчитанные по всем трем метрикам, различались для первого и второго димеров довольно существенно (до 20 % и больше), что говорит о чувствительности всех метрик к незначительным вариациям в конформации димеров тубулина внутри этих комплексов. Подробное описание процедур измерения изгибов тубулиновых протофиламентов, а также выявление преимуществ и недостатков различных метрик позволит увеличить воспроизводимость и четкость анализа структур тубулина в будущем, а также позволит облегчить сопоставление результатов, полученных различными научными группами.
Ключевые слова: тубулин, микротрубочки, динамическая нестабильность, углы Эйлера, молекулярное моделирование.
Microtubule protofilament bending characterization
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 435-443This work is devoted to the analysis of conformational changes in tubulin dimers and tetramers, in particular, the assessment of the bending of microtubule protofilaments. Three recently exploited approaches for estimating the bend of tubulin protofilaments are reviewed: (1) measurement of the angle between the vector passing through the H7 helices in $\alpha$ and $\beta$ tubulin monomers in the straight structure and the same vector in the curved structure of tubulin; (2) measurement of the angle between the vector, connecting the centers of mass of the subunit and the associated GTP nucleotide, and the vector, connecting the centers of mass of the same nucleotide and the adjacent tubulin subunit; (3) measurement of the three rotation angles of the bent tubulin subunit relative to the straight subunit. Quantitative estimates of the angles calculated at the intra- and inter-dimer interfaces of tubulin in published crystal structures, calculated in accordance with the three metrics, are presented. Intra-dimer angles of tubulin in one structure, measured by the method (3), as well as measurements by this method of the intra-dimer angles in different structures, were more similar, which indicates a lower sensitivity of the method to local changes in tubulin conformation and characterizes the method as more robust. Measuring the angle of curvature between H7-helices (method 1) produces somewhat underestimated values of the curvature per dimer. Method (2), while at first glance generating the bending angle values, consistent the with estimates of curved protofilaments from cryoelectron microscopy, significantly overestimates the angles in the straight structures. For the structures of tubulin tetramers in complex with the stathmin protein, the bending angles calculated with all three metrics varied quite significantly for the first and second dimers (up to 20% or more), which indicates the sensitivity of all metrics to slight variations in the conformation of tubulin dimers within these complexes. A detailed description of the procedures for measuring the bending of tubulin protofilaments, as well as identifying the advantages and disadvantages of various metrics, will increase the reproducibility and clarity of the analysis of tubulin structures in the future, as well as it will hopefully make it easier to compare the results obtained by various scientific groups.
-
Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев
Ключевые слова: машинное обучение, распознавание жестов, человеко-машинный интерфейс, электромиография, ансамбль методов, градиентный бустинг, метод $k$-ближайших соседей, дерево решений.
Analysis of the effectiveness of machine learning methods in the problem of gesture recognition based on the data of electromyographic signals
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 175-194Gesture recognition is an urgent challenge in developing systems of human-machine interfaces. We analyzed machine learning methods for gesture classification based on electromyographic muscle signals to identify the most effective one. Methods such as the naive Bayesian classifier (NBC), logistic regression, decision tree, random forest, gradient boosting, support vector machine (SVM), $k$-nearest neighbor algorithm, and ensembles (NBC and decision tree, NBC and gradient boosting, gradient boosting and decision tree) were considered. Electromyography (EMG) was chosen as a method of obtaining information about gestures. This solution does not require the location of the hand in the field of view of the camera and can be used to recognize finger movements. To test the effectiveness of the selected methods of gesture recognition, a device was developed for recording the EMG signal, which includes three electrodes and an EMG sensor connected to the microcontroller and the power supply. The following gestures were chosen: clenched fist, “thumb up”, “Victory”, squeezing an index finger and waving a hand from right to left. Accuracy, precision, recall and execution time were used to evaluate the effectiveness of classifiers. These parameters were calculated for three options for the location of EMG electrodes on the forearm. According to the test results, the most effective methods are $k$-nearest neighbors’ algorithm, random forest and the ensemble of NBC and gradient boosting, the average accuracy of ensemble for three electrode positions was 81.55%. The position of the electrodes was also determined at which machine learning methods achieve the maximum accuracy. In this position, one of the differential electrodes is located at the intersection of the flexor digitorum profundus and flexor pollicis longus, the second — above the flexor digitorum superficialis.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





