Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'group robotics':
Найдено статей: 4
  1. The 3rd BRICS Mathematics Conference
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1015-1016
    The 3rd BRICS Mathematics Conference
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016
  2. Орлинский Е.П., Сорокоумов П.С., Павлов Д.М., Куземкин М.В.
    Моделирование формирований роботов, движущихся в водной среде
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 601-620

    Групповое движение малоразмерных подводных аппаратов — важная прикладная задача. В работе приводятся результаты исследования влияния формации группы на характер ее движения. Оценка лобового сопротивления подводных аппаратов и обтекания потоков вокруг них — традиционная и хорошо известная область исследований. Однако выводы, сделанные для единичного робота, не всегда применимы к группе однотипных устройств из-за появляющихся при совместном движении физических эффектов, например волновой тени. Исходя из этого были исследованы гидродинамические характеристики определенных формаций роботов, движущихся как единое целое. В ходе работы изучались гидродинамические параметры систем с двумя основными типами движителей: локомоторными (аналогами рыбьих хвостов) и гребными винтами. Из соображений природоподобия рассматривались формации, аналогичные по структуре рыбьим косякам, затем оценивалась их применимость для роботов разных видов. Была определена связь между скоростью движения группировки и лобовым сопротивлением каждого из ее участников. Математическое моделирование обтекания группировки роботов проводилось при помощи метода конечных объемов двумя программными комплексами (FlowVision и OpenFoam). Показано, что роботы с винтовым движителем при размещении в тесных формациях мешают друг другу, а для локомоторного случая нахождение в зоне возмущения, наоборот, предпочтительно. Также при плохо обтекаемых корпусах отрывающиеся от поверхности потоки могут превращаться в узкие струи, сильно мешающие задним роботам. Установлено, что эффект водяной тени снижает затраты энергии только при малых скоростях движения — около 5 см/с; при больших скоростях движение в колоннах затрудняется для задних роботов. Кроме того, для рыбоподобного движителя не было выявлено большой разницы в лобовом сопротивлении между одиночным роботом и группой. Таким образом, программное моделирование позволило выработать и обосновать рекомендации по оптимизации построений роботов при групповом движении. Полученные результаты могут оказаться полезными для разработки подводных аппаратов, способных работать в группах, и средств управления ими.

    Orlinsky E.P., Sorokoumov P.S., Pavlov D.M., Kuzemkin M.V.
    Modeling formations of robots moving in an aquatic environment
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 601-620

    The objective of this study is to determine the best formations for the joint movement of a group of small robots in an aquatic environment. Estimation of drag of the flow is a traditional and well-known area of research, but it is not always valid to extend the conclusions made for a single robot to a group of similar devices due to the physical effects that appear during joint movement, such as a wave shadow. For these reasons, it is necessary to study the hydrodynamic characteristics of certain robot formations as a stable structure. The hydrodynamic parameters of systems with two main types of propulsion were studied: locomotive (fishtails) and propellers. Formations similar in structure to schools of fish were mainly considered, and then their applicability for robots of different types was assessed. The relationship between the speed of movement of the group and the drag of each of its participants was also studied. Mathematical modeling of the flow around a group of robots was performed using the finite volume method using two software packages (FlowVision and OpenFoam). Robots with a screw propeller interfere with each other when packed into tight formations, and for the locomotive case, being in the disturbance zone, on the contrary, is preferable. Also, with poorly streamlined bodies, flows separating from the surface can turn into narrow turbulent jets that greatly interfere with the rear robots. It has been established that wake effect reduces energy costs only at low speeds of movement — about 5 cm/s; at high speeds, movement in columns becomes difficult for the rear robots. No large difference in frontal resistance was found between a single robot and a group for a fish-like tail. The studies made it possible to develop and substantiate recommendations for optimizing robot designs for group movement.

  3. Клименко А.Б.
    Математическая модель и эвристические методы организации распределенных вычислений в системах интернета вещей
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 851-870

    В настоящее время интенсивное развитие получило направление в рамках теории распределенных вычислений, когда вычислительные задачи решаются распределенно коллективом ресурсно ограниченных устройств. На практике такой сценарий реализуется при обработке данных в системах интернета вещей, когда с целью снижения латентности систем и загруженности сетевой инфраструктуры данные обрабатываются на вычислительных устройствах края сети, в то время как стремительный рост и распространение систем интернета вещей ставят вопрос о необходимости разработки методов снижения ресурсоемкости производимых вычислений. Ресурсная ограниченность вычислительных устройств ставит следующие вопросы распределения вычислительных ресурсов: во-первых, необходимость учета ресурсной стоимости транзита данных между решаемыми на различных устройствах задачах, во-вторых, необходимость учета ресурсной стоимости непосредственно процесса распределения вычислительных ресурсов, что особенно актуально для групп автономных устройств (роботы различных типов, сенсорные сети и др.). Анализ современных публикаций, представленных в открытом доступе, продемонстрировал отсутствие предложенных моделей или методов распределения вычислительных ресурсов, которые бы совместно учитывали перечисленное, что делает создание новой математической модели организации распределенных вычислений в системах интернета вещей и методов ее решения актуальными.

    В данной статье предложены новая математическая модель распределения вычислительных ресурсов и эвристические методы решения получаемой задачи оптимизации, что в комплексе реализует организацию распределенных вычислений в системах интернета вещей. Рассматривается сценарий, когда в группе устройств имеется лидер, который принимает решение о распределении вычислительных ресурсов, в том числе и собственных, для распределенного решения вычислительных задач с наличием информационных обменов. Также предполагается, что отсутствует априорная информация о том, какому устройству назначена роль лидера, и о маршрутах миграции вычислительных задач на устройства.

    Результаты экспериментального исследования продемонстрировали целесообразность использования предложенных моделей и эвристических методов: достигается распределение вычислительных ресурсов со снижением ресурсной стоимости решения вычислительной задачи до 52 % при учете ресурсной стоимости транзита данных, экономия ресурсов до 73 % при дополнении основных критериев оптимизации распределения задач критерием минимизации количества и расстояний миграций подзадач вычислительной задачи (ВЗ), а также снижение ресурсной стоимости решения задачи распределения вычислительных ресурсов до 28 раз со снижением качества полученного распределения до 10 %.

    Klimenko A.B.
    Mathematical model and heuristic methods of distributed computations organizing in the Internet of Things systems
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 851-870

    Currently, a significant development has been observed in the direction of distributed computing theory, where computational tasks are solved collectively by resource-constrained devices. In practice, this scenario is implemented when processing data in Internet of Things systems, with the aim of reducing system latency and network infrastructure load, as data is processed on edge network computing devices. However, the rapid growth and widespread adoption of IoT systems raise questions about the need to develop methods for reducing the resource intensity of computations. The resource constraints of computing devices pose the following issues regarding the distribution of computational resources: firstly, the necessity to account for the transit cost between different devices solving various tasks; secondly, the necessity to consider the resource cost associated directly with the process of distributing computational resources, which is particularly relevant for groups of autonomous devices such as drones or robots. An analysis of modern publications available in open access demonstrated the absence of proposed models or methods for distributing computational resources that would simultaneously take into account all these factors, making the creation of a new mathematical model for organizing distributed computing in IoT systems and its solution methods topical. This article proposes a novel mathematical model for distributing computational resources along with heuristic optimization methods, providing an integrated approach to implementing distributed computing in IoT systems. A scenario is considered where there exists a leader device within a group that makes decisions concerning the allocation of computational resources, including its own, for distributed task resolution involving information exchanges. It is also assumed that no prior knowledge exists regarding which device will assume the role of leader or the migration paths of computational tasks across devices. Experimental results have shown the effectiveness of using the proposed models and heuristics: achieving up to a 52% reduction in resource costs for solving computational problems while accounting for data transit costs, saving up to 73% of resources through supplementary criteria optimizing task distribution based on minimizing fragment migrations and distances, and decreasing the resource cost of resolving the computational resource distribution problem by up to 28 times with reductions in distribution quality up to 10%.

  4. Брацун Д.А., Костарев К.В.
    Математическое моделирование фазовых переходов при коллективном взаимодействии агентов
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 1005-1028

    Коллективное поведение может выступать в роли механизма терморегуляции и играть ключевую роль при выживании группы организмов. Такие явления в среде животных, как правило, являются предметом изучения биологии, так как внезапные переходы к коллективному поведению трудно дифференцировать от психологической и социальной адаптации животных в группе. Тем не менее в работе указывается важный пример, когда стая животных демонстрирует фазовые переходы, сходные с явлением классической тепловой конвекции в жидкостях и газах. Этот вопрос может быть изучен также экспериментально в рамках синтетических систем, состоящих из самодвижущихся роботов, которые действуют по определенному заданному алгоритму. Обобщая оба эти случая, мы рассматриваем задачу о фазовых переходах в плотной группе взаимодействующих самодвижущихся агентов. Врамк ах микроскопической теории мы предлагаем математическую модель явления, в которой агенты представлены в виде тел, взаимодействующих друг с другом в соответствии с эффективным потенциалом особого вида, выражающим стремление агентов двигаться в направлении градиента общего теплового поля. Показано, что управляющим параметром задачи является численность группы. Дискретная модель с индивидуальной динамикой агентов воспроизводит большинство явлений, наблюдаемых как в естественных стаях животных, демонстрирующих коллективную терморегуляцию, так и в синтетических сложных системах, состоящих из роботов. Наблюдается фазовый переход 1-го рода со сменой агрегатного состояния в среде агентов, который заключается в самосборке первоначальной слабоструктурированной массы агентов в плотные квазикристаллические структуры. Кроме того, показано, что с увеличением численности скопления наблюдается фазовый переход 2-го рода в форме тепловой конвекции, который включает внезапное ожижение группы и переход к вихревому движению. Последнее обеспечивает более эффективное расходование энергии в случае синтетической системы взаимодействующих роботов и коллективное выживание всех особей в случае природных стай животных. С ростом численности группы происходят вторичные бифуркации, вихревая структура толпы агентов усложняется.

    Bratsun D.A., Kostarev K.V.
    Mathematical modeling of phase transitions during collective interaction of agents in a common thermal field
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 1005-1028

    Collective behavior can serve as a mechanism of thermoregulation and play a key role in the joint survival of a group of organisms. In higher animals, such phenomena are usually the subject of study of biology since sudden transitions to collective behavior are difficult to differentiate from the psychological and social adaptation of animals. However, in this paper, we indicate several important examples when a flock of higher animals demonstrates phase transitions similar to known phenomena in liquids and gases. This issue can also be studied experimentally within the framework of synthetic systems consisting of self-propelled robots that act according to a certain given algorithm. Generalizing both of these cases, we consider the problem of phase transitions in a dense group of interacting selfpropelled agents. Within the framework of microscopic theory, we propose a mathematical model of the phenomenon, in which agents are represented as bodies interacting with each other in accordance with an effective potential of a special type, expressing the desire of agents to move in the direction of the gradient of the joint thermal field. We show that the number of agents in the group, the group power, is the control parameter of the problem. A discrete model with individual dynamics of agents reproduces most of the phenomena observed both in natural flocks of higher animals engaged in collective thermoregulation and in synthetic complex systems. A first-order phase transition is observed, which symbolizes a change in the aggregate state in a group of agents. One observes the self-assembly of the initial weakly structured mass of agents into dense quasi-crystalline structures. We demonstrate also that, with an increase in the group power, a second-order phase transition in the form of thermal convection can occur. It manifests in a sudden liquefaction of the group and a transition to vortex motion, which ensures more efficient energy consumption in the case of a synthetic system of interacting robots and the collective survival of all individuals in the case of natural animal flocks.With an increase in the group power, secondary bifurcations occur, the vortex structure in agent medium becomes more complicated.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.