Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
В настоящей статье изложен научный подход Дмитрия Сергеевича Чернавского к вопросам моделирования экономических процессов. Излагается история работы Дмитрия Сергеевича на экономическом направлении, представлены ее основные этапы и достижения. Одним из важнейших достижений в области экономического анализа стало предсказание группой ученых, возглавляемых Д. С. Чернавским, основных кризисов, произошедших в нашей стране за последние 20 лет, а именно дефолта 1998 года, кризиса промышленного производства второй половины 2000-х, кризиса 2008 года и последовавшей за ним рецессии. В качестве примера динамического анализа мировых макроэкономических процессов приведена модель функционирования доллара в качестве мировой валюты. На данном конкретном примере показана возможность сеньёража за счет эмиссии доллара и рассчитано «окно возможностей», которое позволяет эмитировать доллары в качестве мировой валюты без ущерба для собственной экономики.
Как пример динамического анализа экономики отдельного государства рассматривается модель развития закрытого общества (без внешних экономических связей) в однопродуктовом приближении. Модель основана на принципах рыночной экономики, то есть динамика цены определяется балансом спроса и предложения. Показано, что в общем случае состояние рыночного равновесия не единственно. Возможно несколько стационарных состояний, отличающихся уровнем производства и потребления. Рассмотрен эффект адресной денежной эмиссии в низкопродуктивном состоянии. Показано, что в зависимости от ее размера и адреса она может привести к переходу в высокопродуктивное состояние и просто вызвать инфляцию без перехода. Обсуждается связь этих результатов с кейнсианским и монетаристским подходами.
Ключевые слова: экономика, кризисы, динамический анализ, доллар, сеньёраж, математическая модель, эмиссия, инфляция, цифровая экономика.The present article sets out the scientific approach of Dmitry Sergeevich Chernavskii to the modelling of economic processes. It recounts the history of works of Dmitry Sergeyevich on the economic front, its milestones and achievements. One of the most important advances in the economic analysis was the prediction by a team of scientists headed by D. S. Chernavskii, the major crises that have occurred in our country over the last 20 years, namely, the default of 1998, the crisis of industrial production in the second half of the 2000s, the 2008 crisis and the ensuing recession. As an example, the dynamic analysis of the global macroeconomic processes shows the model of functioning of the dollar as the world currency. On this particular example shows the possibility of seigniorage due to the issue of the dollar and the calculated “window of opportunity” that allows you to issue dollars as the global currency, without prejudice to its own economy.
A model for the development of a closed society (without external economic relations) in the one-product approach is considered as an example of dynamic analysis of the economy of a separate state. The model is based on the principles of market economy, i.e. the dynamics of prices is determined by the balance of supply and demand. It is shown that in the general case, the state of market equilibrium is not unique. Several steady states with different levels of production and consumption are possible. Effect of addressed emission of money in underproductive state is considered. It is shown that, depending on its size it can lead to the transition to a highly productive condition, and just cause inflation without transition. The relationship of these results with the “Keynesian” and “monetarist” approaches is discussed.
Keywords: the economy, crises, dynamic analysis, dollar, seigniorage, mathematical model, emission, inflation, the digital economy.Просмотров за год: 5. Цитирований: 2 (РИНЦ). -
Модель двухуровневой межгрупповой конкуренции
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 355-368Еще в середине позапрошлого десятилетия ученые, изучавшие функционирование сообществ насекомых, выделили 4 основных паттерна организационной структуры таких сообществ. (i) Сотрудничество более развито в группах с сильным родством. (ii) Кооперация у видов с большими размерами колоний зачастую развита больше, чем у видов с малыми размерами колоний. Причем в колониях малого размера зачастую наблюдаются больший внутренний репродуктивный конфликт и меньшая морфологическая и поведенческая специализация. (iii) В пределах одного вида численность выводка (т. е. в некотором смысле эффективность) на душу населения обычно снижается по мере увеличения размера колонии. (iv) Развитая кооперация, склонная проявляться при ограниченности ресурсов и жесткой межгрупповой конкуренции. Думая о функционировании группы организмов как о двухуровневом рынке конкуренции, в котором в процессе индивидуального отбора особи сталкиваются с проблемой распределения своей энергии между инвестициями в межгрупповую конкуренцию и инвестициями во внутригрупповую конкуренцию, т. е. внутреннюю борьбу за долю ресурсов, полученных в результате межгрупповой конкуренции, можно сопоставить подобной биологической ситуации экономический феномен coopetition — кооперацию конкурирующих агентов с целью в дальнейшем конкурентно поделить выигранный вследствие кооперации ресурс. В рамках экономических исследований были показаны эффекты, аналогичные (ii): в рамках соревнования большой и маленькой групп оптимальной стратегией большой будет полное выдавливание второй группы и монополизация рынка (т. е. большие группы склонны действовать кооперативно); (iii) существуют условия, при которых размер группы оказывает негативное влияние на продуктивность каждого ее индивида (такой эффект называется парадоксом размера группы, или эффект Рингельмана). Общей идеей моделирования подобных эффектов является идея пропорциональности: каждый индивид (особь / рациональный агент) решает, какую долю своих сил инвестировать в межгрупповую конкуренцию, а какую — во внутригрупповую. При этом выигрыш группы должен быть пропорционален ее суммарным инвестициям в конкуренцию, тогда как выигрыш индивида пропорционален его вкладу во внутривидовую борьбу. Несмотря на распространенность эмпирических наблюдений, до сих пор не была введена теоретико-игровая модель, в которой можно было бы подтвердить наблюдаемые эмпирически эффекты. В рамках данной работы предлагается модель, которая устраняет проблемы ранее существующих, а моделирование равновесных по Нэшу состояний в рамках предложенной модели позволяет пронаблюдать перечисленные выше эффекты в ходе численных экспериментов.
Ключевые слова: теоретико-игровые модели, равновесие по Нэшу, эволюционное моделирование, конкуперация.
The model of two-level intergroup competition
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 355-368At the middle of the 2000-th, scientists studying the functioning of insect communities identified four basic patterns of the organizational structure of such communities. (i) Cooperation is more developed in groups with strong kinship. (ii) Cooperation in species with large colony sizes is often more developed than in species with small colony sizes. And small-sized colonies often exhibit greater internal reproductive conflict and less morphological and behavioral specialization. (iii) Within a single species, brood size (i. e., in a sense, efficiency) per capita usually decreases as colony size increases. (iv) Advanced cooperation tends to occur when resources are limited and intergroup competition is fierce. Thinking of the functioning of a group of organisms as a two-level competitive market in which individuals face the problem of allocating their energy between investment in intergroup competition and investment in intragroup competition, i. e., an internal struggle for the share of resources obtained through intergroup competition, we can compare such a biological situation with the economic phenomenon of “coopetition” — the cooperation of competing agents with the goal of later competitively dividing the resources won in consequence In the framework of economic researches the effects similar to (ii) — in the framework of large and small group competition the optimal strategy of large group would be complete squeezing out of the second group and monopolization of the market (i. e. large groups tend to act cooperatively) and (iii) — there are conditions, in which the size of the group has a negative impact on productivity of each of its individuals (this effect is called the paradox of group size or Ringelman effect). The general idea of modeling such effects is the idea of proportionality — each individual (an individual/rational agent) decides what share of his forces to invest in intergroup competition and what share to invest in intragroup competition. The group’s gain must be proportional to its total investment in competition, while the individual’s gain is proportional to its contribution to intra-group competition. Despite the prevalence of empirical observations, no gametheoretic model has yet been introduced in which the empirically observed effects can be confirmed. This paper proposes a model that eliminates the problems of previously existing ones and the simulation of Nash equilibrium states within the proposed model allows the above effects to be observed in numerical experiments.
-
Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.
Ключевые слова: гетерогенные агенты, ожидания, идиосинкратические шоки, агрегированная неопределенность, теневая экономика, неформальный сектор экономики, легальный сектор экономики, сектор домашних хозяйств, байесовский метод, общее экономическое равновесие.
Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.
-
Итерационные методы декомпозиции при моделировании развития олигополистических рынков
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1237-1256Один из принципов формирования рыночной конкурентной среды состоит в создании условий для реализации экономическими агентами стратегий, оптимальных по Нэшу – Курно. При стандартном подходе к определению рыночных стратегий, оптимальных по Нэшу – Курно, экономические агенты должны обладать полной информацией о показателях и динамических характеристиках всех участников рынка. Что не соответствует действительности.
В связи с этим для отыскания оптимальных по Нэшу – Курно решений в динамических моделях необходимо наличие координатора, обладающего полной информацией об участниках. Однако в случае большого числа участников игры, даже при наличии у координатора необходимой информации, появляются вычислительные трудности, связанные с необходимостью решения большого числа связанных (coupled) уравнений (в случае линейных динамических игр с квадратическим критерием — матричных уравнений Риккати).
В связи с этим возникает необходимость в декомпозиции общей задачи определения оптимальных стратегий участников рынка на частные (локальные) задачи. Применительно к линейным динамическим играм с квадратическим критерием исследовались подходы, основанные на итерационной декомпозиции связанных матричных уравнений Риккати и решении локальных уравнений Риккати. В настоящей статье рассматривается более простой подход к итерационному определению равновесия по Нэшу – Курно в олигополии путем декомпозиции с использованием операционного исчисления (операторного метода).
Предлагаемый подход основан на следующей процедуре. Виртуальный координатор, обладающий информацией о параметрах обратной функции спроса, формирует цены на перспективный период. Олигополисты при заданной фиксированной динамике цен определяют свои стратегии в соответствии с несколько измененным критерием оптимальности. Оптимальные объемы продукции олигополистов поступают к координатору, который на основе итерационного алгоритма корректирует динамику цены на предыдущем шаге.
Предлагаемая процедура иллюстрируется на примере статической и динамической моделей рационального поведения участников олигополии, которые максимизируют чистую текущую стоимость (NPV).
При использовании методов операционного исчисления (и, в частности, обратного Z-преобразования) найдены условия, при которых итерационная процедура приводит к равновесным уровням цены и объемов производства в случае линейных динамических игр как с квадратичными, так и с нелинейными (вогнутыми) критериями оптимизации.
Рассмотренный подход использован применительно к примерам дуополии, триополии, дуополии на рынке с дифференцированным продуктом, дуополии с взаимодействующими олигополистами при линейной обратной функции спроса. Сопоставление результатов расчетов динамики цены и объемов производства олигополистов для рассмотренных примеров на основе связанных (coupled) уравнений матричных уравнений Риккати в Matlab, а также в соответствии с предложенным итерационным методом в широко доступной системе Excel показывает их практическую идентичность.
Кроме того, применение предложенной итерационной процедуры проиллюстрировано на примере дуополии с нелинейной функцией спроса.
Ключевые слова: итерационные методы, олигополия, динамические игры, операционное исчисление, равновесие по Нэшу – Курно.
Iterative decomposition methods in modelling the development of oligopolistic markets
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1237-1256One of the principles of forming a competitive market environment is to create conditions for economic agents to implement Nash – Cournot optimal strategies. With the standard approach to determining Nash – Cournot optimal market strategies, economic agents must have complete information about the indicators and dynamic characteristics of all market participants. Which is not true.
In this regard, to find Nash – Cournot optimal solutions in dynamic models, it is necessary to have a coordinator who has complete information about the participants. However, in the case of a large number of game participants, even if the coordinator has the necessary information, computational difficulties arise associated with the need to solve a large number of coupled equations (in the case of linear dynamic games — Riccati matrix equations).
In this regard, there is a need to decompose the general problem of determining optimal strategies for market participants into private (local) problems. Approaches based on the iterative decomposition of coupled matrix Riccati equations and the solution of local Riccati equations were studied for linear dynamic games with a quadratic criterion. This article considers a simpler approach to the iterative determination of the Nash – Cournot equilibrium in an oligopoly, by decomposition using operational calculus (operator method).
The proposed approach is based on the following procedure. A virtual coordinator, which has information about the parameters of the inverse demand function, forms prices for the prospective period. Oligopolists, given fixed price dynamics, determine their strategies in accordance with a slightly modified optimality criterion. The optimal volumes of production of the oligopolists are sent to the coordinator, who, based on the iterative algorithm, adjusts the price dynamics at the previous step.
The proposed procedure is illustrated by the example of a static and dynamic model of rational behavior of oligopoly participants who maximize the net present value (NPV). Using the methods of operational calculus (and in particular, the inverse Z-transformation), conditions are found under which the iterative procedure leads to equilibrium levels of price and production volumes in the case of linear dynamic games with both quadratic and nonlinear (concave) optimization criteria.
The approach considered is used in relation to examples of duopoly, triopoly, duopoly on the market with a differentiated product, duopoly with interacting oligopolists with a linear inverse demand function. Comparison of the results of calculating the dynamics of price and production volumes of oligopolists for the considered examples based on coupled equations of the matrix Riccati equations in Matlab (in the table — Riccati), as well as in accordance with the proposed iterative method in the widely available Excel system shows their practical identity.
In addition, the application of the proposed iterative procedure is illustrated by the example of a duopoly with a nonlinear demand function.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





