Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.
Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1451-1466Dynamic scenarios leading to multistability in the form of continuous families of stable solutions are studied for a system of autonomous differential equations. The approach is based on determining the cosymmetries of the problem, calculating stationary solutions, and numerically-analytically studying their stability. The analysis is carried out for equations of the Lotka –Volterra type, describing the interaction of two predators feeding on two related prey species. For a system of ordinary differential equations of the 4th order with 11 real parameters, a numerical-analytical study of possible interaction scenarios was carried out. Relationships are found analytically between the control parameters under which the cosymmetry linear in the variables of the problem is realized and families of stationary solutions (equilibria) arise. The case of multicosymmetry is established and explicit formulas for a two-parameter family of equilibria are presented. The analysis of the stability of these solutions made it possible to reveal the division of the family into regions of stable and unstable equilibria. In a computational experiment, the limit cycles branching off from unstable stationary solutions are determined and their multipliers corresponding to multistability are calculated. Examples of the coexistence of families of stable stationary and non-stationary solutions are presented. The analysis is carried out for the growth functions of logistic and “hyperbolic” types. Depending on the parameters, scenarios can be obtained when only stationary solutions (coexistence of prey without predators and mixed combinations), as well as families of limit cycles, are realized in the phase space. The multistability scenarios considered in the work allow one to analyze the situations that arise in the presence of several related species in the range. These results are the basis for subsequent analysis when the parameters deviate from cosymmetric relationships.
-
Регуляризация и ускорение метода Гаусса – Ньютона
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.
Ключевые слова: системы нелинейных уравнений, невыпуклая оптимизация, метод Гаусса – Ньютона, условие Поляка – Лоясиевича, оценка сложности.
Regularization and acceleration of Gauss – Newton method
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.
-
Точное вычисление апостериорной функции распределения вероятно- сти при помощи вычислительных систем
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 539-542Представленная работа описывает опыт создания и развёртывания веб-приложения и гридинфраструктуры для решения задач геофизики, требующих большого количества вычислительных ресурсов. В работе представлен обзор технологии и механизма платформы интеграции геофизических приложений с распределёнными вычислительными системами. Разработанная платформа предоставляет собой промежуточное программное обеспечение, предоставляющая удобный доступ к развёрнутым на ее основе геофизическим приложениям. Доступ к приложению осуществляется через веб-браузер. Интеграция новых приложений облегчается за счёт предоставляемого стандартного универсального интерфейса взаимодействия платформы и новым приложением.
Для организации распределённой вычислительной системы применено ПО Gridway, экземпляр которого взаимодействует с виртуализированными вычислительными кластерами. Виртуализация вычислительных кластеров предоставляет новые возможности при утилизации вычислительных ресурсов по сравнению с традиционными схемами организации кластерного ПО.
В качестве пилотной задачи использована обратная задача определение параметров анизотропии коры и верхней мантии по данным телесейсмических наблюдений. Для решения использован вероятностный подход к решению обратных задач, основанный на формализме апостериорной функции распределения (АПФР). При этом вычислительная задача сводится к табулированию многомерной функции. Результат вычислений представлен в удобном для анализа высокоуровневом виде, доступ и управление осуществляется при помощи СУБД. Приложение предоставляет инструменты анализу АПФР: расчет первых моментов, двумерные маргинальные распределения, двумерные сечения АПФР в точках ее максимума. При тестировании веб-приложения были выполнены вычислены как синтетических, так и для реальных данных.
Ключевые слова: распределенные вычислительные системы, виртуальный вычислительный кластер, геофизика.
Exact calculation of a posteriori probability distribution with distributed computing systems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 539-542Просмотров за год: 3.We'd like to present a specific grid infrastructure and web application development and deployment. The purpose of infrastructure and web application is to solve particular geophysical problems that require heavy computational resources. Here we cover technology overview and connector framework internals. The connector framework links problem-specific routines with middleware in a manner that developer of application doesn't have to be aware of any particular grid software. That is, the web application built with this framework acts as an interface between the user 's web browser and Grid's (often very) own middleware.
Our distributed computing system is built around Gridway metascheduler. The metascheduler is connected to TORQUE resource managers of virtual compute nodes that are being run atop of compute cluster utilizing the virtualization technology. Such approach offers several notable features that are unavailable to bare-metal compute clusters.
The first application we've integrated with our framework is seismic anisotropic parameters determination by inversion of SKS and converted phases. We've used probabilistic approach to inverse problem solution based on a posteriory probability distribution function (APDF) formalism. To get the exact solution of the problem we have to compute the values of multidimensional function. Within our implementation we used brute-force APDF calculation on rectangular grid across parameter space.
The result of computation is stored in relational DBMS and then represented in familiar human-readable form. Application provides several instruments to allow analysis of function's shape by computational results: maximum value distribution, 2D cross-sections of APDF, 2D marginals and a few other tools. During the tests we've run the application against both synthetic and observed data.
-
Использование облачных технологий CERN для дальнейшего развития по TDAQ ATLAS и его применения при обработке данных ДЗЗ в приложениях космического мониторинга
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 683-689Облачные технологий CERN (проект CernVM) дают новые возможности разработчикам программного обеспечения. Участие группы TDAQ ATLAS ОИЯИ в разработке ПО распределенной системы сбора и обработке данных эксперимента ATLAS (CERN) связано с необходимостью работы в условиях динамично развивающейся системы и ее инфраструктуры. Использование облачных технологий, в частности виртуальных машин CernVM, предоставляет наиболее эффективные способы доступа как к собственно ПО TDAQ, так и к ПО, используемому в CERN: среда — Scientific Linux и software repository c CernVM-FS. Исследуется вопрос о возможности функционирования ПО промежуточного уровня (middleware) в среде CernVM. Использование CernVM будет проиллюстрировано на трех задачах: разработка пакетов Event Dump и Webemon, а также на адаптации системы автоматической проверки качества данных TDAQ ATLAS — Data Quality Monitoring Framework для задач оценки качества радиолокационных данных.
Ключевые слова: облачные технологий, виртуальные машины, обработка данных в области дистанционного зондирования Земли, ATLAS TDAQ, ПО промежуточного уровня.
Using CERN cloud technologies for the further ATLAS TDAQ software development and for its application for the remote sensing data processing in the space monitoring tasks
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 683-689Просмотров за год: 2.The CERN cloud technologies (the CernVM project) give a new possibility for the software developers. The participation of the JINR ATLAS TDAQ working group in the software development for distributed data acquisition and processing system (TDAQ) of the ATLAS experiment (CERN) involves the work in the condition of the dynamically developing system and its infrastructure. The CERN cloud technologies, especially CernVM, provide the most effective access as to the TDAQ software as to the third-part software used in ATLAS. The access to the Scientific Linux environment is provided by CernVM virtual machines and the access software repository — by CernVM-FS. The problem of the functioning of the TDAQ middleware in the CernVM environment was studied in this work. The CernVM usage is illustrated on three examples: the development of the packages Event Dump and Webemon, and the adaptation of the data quality auto checking system of the ATLAS TDAQ (Data Quality Monitoring Framework) for the radar data assessment.
-
Неоднородные клеточные генетические алгоритмы
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 775-780В работе вводится в рассмотрение понятие неоднородного клеточного генетического алгоритма, в котором ряд параметров, влияющих на работу генетических операторов, оказывается зависимым от местоположения клеток заданного клеточного пространства. Приводятся результаты численного сравнения неоднородных клеточных генетических алгоритмов со стандартными вариантами генетических алгоритмов, показывающие преимущества предложенного подхода при минимизации мультимодальных функций с большим числом локальных экстремумов. Рассматривается крупноблочная параллельная реализация неоднородных клеточных алгоритмов с использованием технологии MPI.
Non-uniform cellular genetic algorithms
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 775-780Просмотров за год: 9. Цитирований: 3 (РИНЦ).In this paper, we introduce the concept of non-uniform cellular genetic algorithm, in which a number of parameters that affect the operation of genetic operators is dependent on the location of the cells of a given cellular space. The results of numerical comparison of non-uniform cellular genetic algorithms with the standard genetic algorithms, showing the advantages of the proposed approach while minimizing multimodal functions with a large number of local extrema, are presented. The coarse-grained parallel implementation of the non-uniform algorithms using the technology of MPI is considered.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"