Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Распространение языков в КНР на уровне провинций: оценивание при неполных данных
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 707-716Данная работа посвящена решению практической задачи восстановления данных по распространению языков на региональном уровне на примере Китайской Народной Республики. Необходимость получения таких данных связана с задачей вычисления индексов лингвистического разнообразия, которые, в свою очередь, активно используются при эмпирическом анализе и прогнозе факторов социально-экономического развития, а также могут служить индикаторами потенциальных конфликтов на рассматриваемых территориях. В качестве исходной информации мы используем сведения из базы данных «Этнолог» (Ethnologue), дополняя их общедоступными данными переписей населения. Рассматриваемые нами данные содержат по каждому языку (а) оценку количества жителей страны, считающих этот язык родным, и (б) индикаторы наличия таких жителей в каждой из провинций КНР. Наша задача — для всех пар «язык–провинция» оценить количество жителей провинции, считающих этот язык родным. Она сводится к решению недоопределенной системы алгебраических уравнений. Специфика данных Ethnologue заключается в том, что, в силу большой трудоемкости и стоимости сбора таких данных, а также неполноты сведений по соответствующему разделу в переписях населения, имеющаяся информация по отдельным языкам в различных провинциях представлена за различные периоды времени. Одновременное использование таких данных приводит к тому, что возникающая система уравнений имеет неточно определенную правую часть, поэтому мы строим приближенное решение, характеризуемое минимальной невязкой. Учитывая неоднородность исходных данных (некоторые из языков оказываются на порядки менее распространенными), мы переходим к использованию взвешенной невязки, определяя в каждом уравнении весовые коэффициенты как величины, обратно пропорциональные правой части. Такой способ формирования невязки позволяет восстановить искомые переменные. Более 92% переменных оказываются устойчивыми к изменениям правой части при вероятностном моделировании ошибок записей в исходных данных.
Ключевые слова: использование языков в регионах, индексы неоднородности, восстановление неполных данных.
Languages in China provinces: quantitative estimation with incomplete data
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 707-716Просмотров за год: 3.This paper formulates and solves a practical problem of data recovery regarding the distribution of languages on regional level in context of China. The necessity of this recovery is related to the problem of the determination of the linguistic diversity indices, which, in turn, are used to analyze empirically and to predict sources of social and economic development as well as to indicate potential conflicts at regional level. We use Ethnologue database and China census as the initial data sources. For every language spoken in China, the data contains (a) an estimate of China residents who claim this language to be their mother tongue, and (b) indicators of the presence of such residents in China provinces. For each pair language/province, we aim to estimate the number of the province inhabitants that claim the language to be their mother tongue. This base problem is reduced to solving an undetermined system of algebraic equations. Given additional restriction that Ethnologue database introduces data collected at different time moments because of gaps in Ethnologue language surveys and accompanying data collection expenses, we relate those data to a single time moment, that turns the initial task to an ’ill-posed’ system of algebraic equations with imprecisely determined right hand side. Therefore, we are looking for an approximate solution characterized by a minimal discrepancy of the system. Since some languages are much less distributed than the others, we minimize the weighted discrepancy, introducing weights that are inverse to the right hand side elements of the equations. This definition of discrepancy allows to recover the required variables. More than 92% of the recovered variables are robust to probabilistic modelling procedure for potential errors in initial data.
-
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
Traffic flow speed prediction on transportation graph with convolutional neural networks
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367Просмотров за год: 36.The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.
-
Применение метода сбалансированной идентификации для заполнения пропусков в рядах наблюдений за потоками СО2 на сфагновом верховом болоте
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 153-171В работе рассматривается применение метода сбалансированной идентификации для построения многофакторной функциональной зависимости нетто СО2-обмена (NEE) от факторов внешней среды и ее дальнейшего использования для заполнения пропусков в рядах наблюдений за потоками СО2 на верховом сфагновом болоте в Тверской области. Измерения потоков на болоте проводились с помощью метода турбулентных пульсаций в период с августа по ноябрь 2017 года. Из-за дождливых погодных условий и высокой повторяемости периодов с низкой турбулентностью на протяжении всего периода наблюдений доля пропусков в измерениях NEE на исследуемом болоте превысила 40%. Разработанная для заполнения пропусков модель описывает NEE верхового болота как разность экосистемного дыхания (RE) и валовой первичной продукции (GPP) и учитывает зависимость этих параметров от приходящей суммарной солнечной радиации (Q), температуры почвы (T), дефицита упругости водяного пара (VPD) и уровня болотных вод (WL). Используемый для этой цели метод сбалансированной идентификации основан на поиске оптимального соотношения между простотой модели и точностью повторения измерений — соотношения, доставляющего минимум оценке погрешности моделирования, полученной методом перекрестного оценивания. Полученные численные решения обладают минимально необходимой нелинейностью (кривизной), что обеспечивает хорошие интерполяционные и экстраполяционные свойства построенных моделей, необходимые для восполнения недостающих данных по потокам. На основе проведенного анализа временной изменчивости NEE и факторов внешней среды была выявлена статистически значимая зависимость GPP болота от Q, T и VPD, а RE — от T и WL. При этом погрешность применения предложенного метода для моделирования среднесуточных данных NEE составила менее 10%, а точность выполненных оценок NEE была выше, чем у модели REddyProc, учитывающей влияние на NEE меньшего числа внешних факторов. На основе восстановленных непрерывных рядов данных по NEE была проведена оценка масштабов внутрисуточной и межсуточной изменчивости NEE и получены интегральные оценки потоков СО2 исследуемого верхового болота для выбранного летне-осеннего периода. Было показано, что если в августе 2017 года на исследуемом болоте скорость фиксации СО2 растительным покровом существенно превышала величину экосистемного дыхания, то, начиная с сентября, на фоне снижения GPP исследуемое болото превратилось в устойчивый источник СО2 для атмосферы.
Ключевые слова: метод сбалансированной идентификации, метод турбулентных пульсаций, верховое болото, нетто-экосистемный обмен СО2, экосистемное дыхание, валовая первичная продукция.
Application of a balanced identification method for gap-filling in CO2 flux data in a sphagnum peat bog
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 153-171Просмотров за год: 19.The method of balanced identification was used to describe the response of Net Ecosystem Exchange of CO2 (NEE) to change of environmental factors, and to fill the gaps in continuous CO2 flux measurements in a sphagnum peat bog in the Tver region. The measurements were provided in the peat bog by the eddy covariance method from August to November of 2017. Due to rainy weather conditions and recurrent periods with low atmospheric turbulence the gap proportion in measured CO2 fluxes at our experimental site during the entire period of measurements exceeded 40%. The model developed for the gap filling in long-term experimental data considers the NEE as a difference between Ecosystem Respiration (RE) and Gross Primary Production (GPP), i.e. key processes of ecosystem functioning, and their dependence on incoming solar radiation (Q), soil temperature (T), water vapor pressure deficit (VPD) and ground water level (WL). Applied for this purpose the balanced identification method is based on the search for the optimal ratio between the model simplicity and the data fitting accuracy — the ratio providing the minimum of the modeling error estimated by the cross validation method. The obtained numerical solutions are characterized by minimum necessary nonlinearity (curvature) that provides sufficient interpolation and extrapolation characteristics of the developed models. It is particularly important to fill the missing values in NEE measurements. Reviewing the temporary variability of NEE and key environmental factors allowed to reveal a statistically significant dependence of GPP on Q, T, and VPD, and RE — on T and WL, respectively. At the same time, the inaccuracy of applied method for simulation of the mean daily NEE, was less than 10%, and the error in NEE estimates by the method was higher than by the REddyProc model considering the influence on NEE of fewer number of environmental parameters. Analyzing the gap-filled time series of NEE allowed to derive the diurnal and inter-daily variability of NEE and to obtain cumulative CO2 fluxs in the peat bog for selected summer-autumn period. It was shown, that the rate of CO2 fixation by peat bog vegetation in August was significantly higher than the rate of ecosystem respiration, while since September due to strong decrease of GPP the peat bog was turned into a consistent source of CO2 for the atmosphere.
-
Deriving specifications of dependable systems
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1637-1650Although human skills are heavily involved in the Requirements Engineering process, in particular, in requirements elicitation, analysis and specification, still methodology and formalism play a determining role in providing clarity and enabling analysis. In this paper, we propose a method for deriving formal specifications, which are applicable to dependable software systems. First, we clarify what the method itself is. Computer science has a proliferation of languages and methods, but the difference between the two is not always clear. This is a conceptual contribution. Furthermore, we propose the idea of Layered Fault Tolerant Specification (LFTS). The principle consists in layering specifications in (at least) two different layers: one for normal behaviors and others (if more than one) for abnormal behaviors. Abnormal behaviors are described in terms of an Error Injector (EI), which represent a model of the expected erroneous interference coming from the environment. This structure has been inspired by the notion of an idealized Fault Tolerant component, but the combination of LFTS and EI using rely guarantee thinking to describe interference is our second contribution. The overall result is the definition of a method for the specification of systems that do not run in isolation but in the real, physical world. We propose an approach that is pragmatic to its target audience: techniques must scale and be usable by non-experts, if they are to make it into an industrial setting. This article is making tentative steps, but the recent trends in Software Engineering such as Microservices, smart and software-defined buildings, M2M micropayments and Devops are relevant fields continue the investigation concerning dependability and rely guarantee thinking.
Ключевые слова: formal methods, dependability.
Deriving specifications of dependable systems
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1637-1650Although human skills are heavily involved in the Requirements Engineering process, in particular, in requirements elicitation, analysis and specification, still methodology and formalism play a determining role in providing clarity and enabling analysis. In this paper, we propose a method for deriving formal specifications, which are applicable to dependable software systems. First, we clarify what the method itself is. Computer science has a proliferation of languages and methods, but the difference between the two is not always clear. This is a conceptual contribution. Furthermore, we propose the idea of Layered Fault Tolerant Specification (LFTS). The principle consists in layering specifications in (at least) two different layers: one for normal behaviors and others (if more than one) for abnormal behaviors. Abnormal behaviors are described in terms of an Error Injector (EI), which represent a model of the expected erroneous interference coming from the environment. This structure has been inspired by the notion of an idealized Fault Tolerant component, but the combination of LFTS and EI using rely guarantee thinking to describe interference is our second contribution. The overall result is the definition of a method for the specification of systems that do not run in isolation but in the real, physical world. We propose an approach that is pragmatic to its target audience: techniques must scale and be usable by non-experts, if they are to make it into an industrial setting. This article is making tentative steps, but the recent trends in Software Engineering such as Microservices, smart and software-defined buildings, M2M micropayments and Devops are relevant fields continue the investigation concerning dependability and rely guarantee thinking.
Keywords: formal methods, dependability. -
Анализ респираторных реакций человека в условиях измененной газовой среды на математической модели
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 281-296Цель работы — обоснование и разработка методики прогноза динамики респираторных реакций человека на основе математического моделирования. Для достижения этой цели были поставлены и решены следующие задачи: разработаны и обоснованы общая структура и формализованное описание модели респираторной системы; построен и программно реализован алгоритм модели газообмена организма; проведены вычислительный эксперимент и проверка модели на адекватность на основе литературных данных и собственных экспериментальных исследований.
В данном варианте в комплексную модель вошел новый модифицированный вариант частной модели физико-химических свойств крови и кислотно-щелочного баланса. При разработке модели в основу формализованного описания была положена концепция разделения физиологической системы регуляции на активные и пассивные подсистемы регуляции. Разработка модели проводилась поэтапно. Комплексная модель газообмена состояла из следующих частных моделей: базовой биофизической модели системы газообмена; модели физико-химических свойств крови и кислотно-щелочного баланса; модели пассивных механизмов газообмена, разработанной на основе уравнений материального баланса Гродинза Ф.; модели химической регуляции, разработанной на основе многофакторной модели Грея Д.
При программной реализации модели расчеты выполнялись в среде программирования MatLab. Для решения уравнений использовался метод Рунге–Кутты–Фехлберга. При этом предполагается, что модель будет представлена в виде компьютерной исследовательской программы, позволяющей реализовать различные гипотезы о механизме наблюдаемых процессов. Рассчитаны предполагаемые величины основных показателей газообмена в условиях гиперкапнии и гипоксии. Результаты расчетов, как по характеру, так и количественно, достаточно хорошо согласуются с данными, полученными в исследованиях на испытателях. Проведенная проверка на адекватность подтвердила, что погрешность вычислений находится в пределах погрешности данных медико-биологических экспериментов. Модель можно использовать при теоретическом прогнозировании динамики респираторных реакций организма человека в условиях измененной газовой среды.
Ключевые слова: математическая модель, минутный объем дыхания, имитация, регуляция, дыхание, респираторная система, гипоксия, гиперкапния.
The analysis of respiratory reactions of the person in the conditions of the changed gas environment on mathematical model
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 281-296Просмотров за год: 5.The aim of the work was to study and develop methods of forecasting the dynamics of the human respiratory reactions, based on mathematical modeling. To achieve this goal have been set and solved the following tasks: developed and justified the overall structure and formalized description of the model Respiro-reflex system; built and implemented the algorithm in software models of gas exchange of the body; computational experiments and checking the adequacy of the model-based Lite-ture data and our own experimental studies.
In this embodiment, a new comprehensive model entered partial model modified version of physicochemical properties and blood acid-base balance. In developing the model as the basis of a formalized description was based on the concept of separation of physiologically-fi system of regulation on active and passive subsystems regulation. Development of the model was carried out in stages. Integrated model of gas exchange consisted of the following special models: basic biophysical models of gas exchange system; model physicochemical properties and blood acid-base balance; passive mechanisms of gas exchange model developed on the basis of mass balance equations Grodinza F.; chemical regulation model developed on the basis of a multifactor model D. Gray.
For a software implementation of the model, calculations were made in MatLab programming environment. To solve the equations of the method of Runge–Kutta–Fehlberga. It is assumed that the model will be presented in the form of a computer research program, which allows implements vat various hypotheses about the mechanism of the observed processes. Calculate the expected value of the basic indicators of gas exchange under giperkap Britain and hypoxia. The results of calculations as the nature of, and quantity is good enough co-agree with the data obtained in the studies on the testers. The audit on Adek-vatnost confirmed that the error calculation is within error of copper-to-biological experiments. The model can be used in the theoretical prediction of the dynamics of the respiratory reactions of the human body in a changed atmosphere.
-
Математическая модель биометрической системы распознавания по радужной оболочке глаза
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.
Ключевые слова: биометрическаяс истема, радужнаяо болочка, математическаям одель, коэффициент ложного доступа, коэффициент ложного отказа доступа.
Mathematical model of the biometric iris recognition system
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.
-
Технология сбора исходных данных для построения моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности в решении отдельных задач обеспечения транспортной безопасности
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 417-427В данной статье решается задача разработки технологии сбора исходных данных для построения моделей оценки функционального состояния человека. Данное состояние оценивается по зрачковой реакции человека на изменение освещенности на основе метода пупиллометрии. Данный метод предполагает сбор и анализ исходных данных (пупиллограмм), представленных в виде временных рядов, характеризующих динамику изменения зрачков человека на световое импульсное воздействие. Анализируются недостатки традиционного подхода к сбору исходных данных с применением методов компьютерного зрения и сглаживания временных рядов. Акцентируется внимание на важности качества исходных данных для построения адекватных математических моделей. Актуализируется необходимость ручной разметки окружностей радужной оболочки глаза и зрачка для повышения точности и качества исходных данных. Описываются этапы предложенной технологии сбора исходных данных. Приводится пример полученной пупиллограммы, имеющей гладкую форму и не содержащей выбросы, шумы, аномалии и пропущенные значения. На основе представленной технологии разработан программно-аппаратный комплекс, представляющий собой совокупность специального программного обеспечения, имеющего два основных модуля, и аппаратной части, реализованной на базе микрокомпьютера Raspberry Pi 4 Model B, с периферийным оборудованием, реализующим заданный функционал. Для оценки эффективности разработанной технологии используются модели однослойного персептрона и коллектива нейронных сетей, для построения которых использовались исходные данные о функциональном состоянии утомления человека. Проведенные исследования показали, что применение ручной разметки исходных данных (по сравнению с автоматическими методами компьютерного зрения) приводит к снижению числа ошибок 1-го и 2-года рода и, соответственно, повышению точности оценки функционального состояния человека. Таким образом, представленная технология сбора исходных данных может эффективно использоваться для построения адекватных моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности. Использование таких моделей актуально в решении отдельных задач обеспечения транспортной безопасности, в частности мониторинга функционального состояния водителей.
Ключевые слова: пупиллометрия, сбор исходных данных, компьютерное зрение, оценка функционального состояния человека, зрачковая реакция, мониторинг состояния усталости водителя.
Technology for collecting initial data for constructing models for assessing the functional state of a human by pupil's response to illumination changes in the solution of some problems of transport safety
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 417-427This article solves the problem of developing a technology for collecting initial data for building models for assessing the functional state of a person. This condition is assessed by the pupil response of a person to a change in illumination based on the pupillometry method. This method involves the collection and analysis of initial data (pupillograms), presented in the form of time series characterizing the dynamics of changes in the human pupils to a light impulse effect. The drawbacks of the traditional approach to the collection of initial data using the methods of computer vision and smoothing of time series are analyzed. Attention is focused on the importance of the quality of the initial data for the construction of adequate mathematical models. The need for manual marking of the iris and pupil circles is updated to improve the accuracy and quality of the initial data. The stages of the proposed technology for collecting initial data are described. An example of the obtained pupillogram is given, which has a smooth shape and does not contain outliers, noise, anomalies and missing values. Based on the presented technology, a software and hardware complex has been developed, which is a collection of special software with two main modules, and hardware implemented on the basis of a Raspberry Pi 4 Model B microcomputer, with peripheral equipment that implements the specified functionality. To evaluate the effectiveness of the developed technology, models of a single-layer perspetron and a collective of neural networks are used, for the construction of which the initial data on the functional state of intoxication of a person were used. The studies have shown that the use of manual marking of the initial data (in comparison with automatic methods of computer vision) leads to a decrease in the number of errors of the 1st and 2nd years of the kind and, accordingly, to an increase in the accuracy of assessing the functional state of a person. Thus, the presented technology for collecting initial data can be effectively used to build adequate models for assessing the functional state of a person by pupillary response to changes in illumination. The use of such models is relevant in solving individual problems of ensuring transport security, in particular, monitoring the functional state of drivers.
-
Об алгоритмической сущности биологии
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 641-652Степень математизации физики чрезвычайно высока, и это позволяет понимать законы природы путем анализа математических структур, которые их описывают. Но это верно лишь для физических законов. Напротив, степень математизации биологии весьма невелика, и все попытки ее математизации ограничиваются применением тех математических методов, которые употребляются для описания физических систем. Такой подход, возможно, ошибочен, поскольку биологическим системам придаются атрибуты, которых у них нет. Некоторые думают, что нам нужны новые математические методы, которые соответствуют нуждам биологии и не известны физике. Однако, рассматривая специфику биологических систем, мы должны говорить об их алгоритмичности, а не об их математичности. В качестве примеров алгоритмического подхода к биологическим системам можно указать на так называемые индивидуальные модели (individual-based models), которые в экологии употребляются для описания динамики популяций, или на фрактальные модели, описывающие геометрическую структуру растений.
Ключевые слова: математизация физики, математизация биологии, алгоритмичность биологии, индивидуальные модели, фрактальные модели.Mathematicity of physics is surprising, but it enables us to understand the laws of nature through the analysis of mathematical structures describing it. This concerns, however, only physics. The degree of the mathematization of biology is low, and attempts to mathematize it are limited to the application of mathematical methods used for the description of physical systems. When doing so, we are likely to commit an error of attributing to biological systems features that they do not have. Some argue that biology does need new mathematical methods conforming to its needs, and not known from physics. However, because of a specific complexity of biological systems, we should speak of their algorithmicity, rather than of their mathematicity. As an example of algorithmic approach one can indicate so called individual-based models used in ecology to describe population dynamics or fractal models applied to describe geometrical complexity of such biological structures as trees.
-
Применимость приближения однократного рассеяния при импульсном зондировании неоднородной среды
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1063-1079В работе рассмотрена математическая модель, основанная на линейном интегро-дифференциальном уравнении Больцмана, описывающая перенос излучения в рассеивающей среде, подвергающейся импульсному облучению точечным источником. Сформулирована обратная задача для уравнения переноса, заключающаяся в определении коэффициента рассеяния по временно-угловому распределению плотности потока излучения в заданной точке пространства. При исследовании обратной задачи анализируется представление решения уравнения в виде ряда Неймана. Нулевой член ряда описывает нерассеянное излучение, первый член ряда — однократно рассеянное поле, остальные члены — многократно рассеянное поле. Для областей с небольшой оптической толщиной и невысоким уровнем рассеяния при нахождении приближенного решения уравнения переноса излучения широкое распространение получило приближение однократного рассеяния. При использовании этого подхода к задаче с дополнительными ограничениями на исходные данные получена аналитическая формула для нахождения коэффициента рассеяния. Для проверки адекватности полученной формулы построен и программно реализован весовой метод Монте-Карло решения уравнения переноса, учитывающий многократное рассеяние в среде и пространственно-временную сингулярность источника излучения. Применительно к проблемам высокочастотного акустического зондирования в океане проведены вычислительные эксперименты. Показано, что применение приближения однократного рассеяния оправдано по крайней мере на дальности зондирования порядка ста метров, причем основное влияние на погрешность формулы вносят двукратно и трехкратно рассеянные поля. Для областей большего размера приближение однократного рассеяния в лучшем случае дает лишь качественное представление о структуре среды, иногда не позволяя определить даже порядок количественных характеристик параметров взаимодействия излучения с веществом.
Ключевые слова: уравнение перенос излучения, обратная задача, коэффициент рассеяния, приближение однократного рассеяния, метод Монте-Карло.
The applicability of the approximation of single scattering in pulsed sensing of an inhomogeneous medium
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1063-1079The mathematical model based on the linear integro-differential Boltzmann equation is considered in this article. The model describes the radiation transfer in the scattering medium irradiated by a point source. The inverse problem for the transfer equation is defined. This problem consists of determining the scattering coefficient from the time-angular distribution of the radiation flux density at a given point in space. The Neumann series representation for solving the radiation transfer equation is analyzed in the study of the inverse problem. The zero member of the series describes the unscattered radiation, the first member of the series describes a single-scattered field, the remaining members of the series describe a multiple-scattered field. When calculating the approximate solution of the radiation transfer equation, the single scattering approximation is widespread to calculated an approximate solution of the equation for regions with a small optical thickness and a low level of scattering. An analytical formula is obtained for finding the scattering coefficient by using this approximation for problem with additional restrictions on the initial data. To verify the adequacy of the obtained formula the Monte Carlo weighted method for solving the transfer equation is constructed and software implemented taking into account multiple scattering in the medium and the space-time singularity of the radiation source. As applied to the problems of high-frequency acoustic sensing in the ocean, computational experiments were carried out. The application of the single scattering approximation is justified, at least, at a sensing range of about one hundred meters and the double and triple scattered fields make the main impact on the formula error. For larger regions, the single scattering approximation gives at the best only a qualitative evaluation of the medium structure, sometimes it even does not allow to determine the order of the parameters quantitative characteristics of the interaction of radiation with matter.
-
Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.
Ключевые слова: сверточная нейронная сеть, анализ данных, распознавание дорожных знаков, интеллектуальные транспортные системы.
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"