Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Модель интерференции длинных волн экономического развития
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 649-663В статье обосновывается необходимость разработки и анализа математических моделей, учитывающих взаимное влияние длинных (кондратьевских) волн экономического развития. Анализ имеющихся публикаций показывает, что на модельном уровне прямые и обратные связи между пересекающимися длинными волнами до сих пор изучены недостаточно. Как свидетельствует практика, производства текущей длинной волны могут получать дополнительный импульс к росту со стороны технологий следующей длинной волны. Технологии очередной промышленной революции часто служат улучшающими инновациями для производств, рожденных предшествующей промышленной революцией. Как следствие, новая длинная волна увеличивает амплитуду колебаний траектории предшествующей длинной волны. Такого рода результаты взаимодействия длинных волн в экономике похожи на эффекты интерференции физических волн. Взаимовлияние спадов и подъемов экономик разных стран дает еще больше оснований для сопоставления последствий этого взаимовлияния с интерференцией физических волн. В статье представлена модель развития технологической базы производства, учитывающая возможности комбинирования старых и новых технологий. Модель состоит из нескольких подмоделей. Использование отличающегося математического описания для отдельных этапов обновления технологической базы производства позволяет учесть значительные различия между последовательными фазами жизненного цикла технологий широкого применения, рассматриваемых в современной литературе в качестве технологической основы промышленных революций. Одной из таких фаз является период формирования соответствующей инфраструктуры, необходимой для интенсивной диффузии новой технологии широкого применения, для быстрого развития использующих эту технологию отраслей. По модели выполнены иллюстративные расчеты при значениях экзогенных параметров, отвечающих логике смены длинных волн. При всей условности проведенных иллюстративных расчетов конфигурация кривой, представляющей изменение фондоотдачи в моделируемом периоде, близка к конфигурации реальной траектории фондоотдачи частных основных производственных фондов экономики США в период 1982–2019 гг. Указаны факторы, которые остались за рамками представленной модели, но которые целесообразно учитывать при описании интерференции длинных волн экономического развития.
Ключевые слова: длинные волны экономического развития, интерференция волн, технологии широкого применения, диффузия инноваций, улучшающие инновации, инфраструктура.
The model of interference of long waves of economic development
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 649-663The article substantiates the need to develop and analyze mathematical models that take into account the mutual influence of long (Kondratiev) waves of economic development. The analysis of the available publications shows that at the model level, the direct and inverse relationships between intersecting long waves are still insufficiently studied. As practice shows, the production of the current long wave can receive an additional impetus for growth from the technologies of the next long wave. The technologies of the next industrial revolution often serve as improving innovations for the industries born of the previous industrial revolution. As a result, the new long wave increases the amplitude of the oscillations of the trajectory of the previous long wave. Such results of the interaction of long waves in the economy are similar to the effects of interference of physical waves. The mutual influence of the recessions and booms of the economies of different countries gives even more grounds for comparing the consequences of this mutual influence with the interference of physical waves. The article presents a model for the development of the technological base of production, taking into account the possibilities of combining old and new technologies. The model consists of several sub-models. The use of a different mathematical description for the individual stages of updating the technological base of production allows us to take into account the significant differences between the successive phases of the life cycle of general purpose technologies, considered in modern literature as the technological basis of industrial revolutions. One of these phases is the period of formation of the appropriate infrastructure necessary for the intensive diffusion of new general purpose technology, for the rapid development of industries using this technology. The model is used for illustrative calculations with the values of exogenous parameters corresponding to the logic of changing long waves. Despite all the conditionality of the illustrative calculations, the configuration of the curve representing the change in the return on capital in the simulated period is close to the configuration of the real trajectory of the return on private fixed assets of the US economy in the period 1982-2019. The factors that remained outside the scope of the presented model, but which are advisable to take into account when describing the interference of long waves of economic development, are indicated.
-
Укрупненная модель эколого-экономической системы на примере Республики Армения
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 621-631В настоящей статье представлена укрупненная динамическая модель эколого-экономической системы Республики Армения (РА). Такая модель построена с использованием методов системной динамики, позволяющих учесть важнейшие обратные связи, относящиеся к ключевым характеристикам эколого-экономической системы. Данная модель является двухкритериальной задачей, где в качестве целевого функционала рассматриваются уровень загрязнения воздуха и валовой прибыли национальной экономики. Уровень загрязнения воздуха минимизируется за счет модернизации стационарных и мобильных источников загрязнения при одновременной максимизации валовой прибыли национальной экономики. При этом рассматриваемая эколого-экономическая система характеризуется наличием внутренних ограничений, которые должны быть учтены при принятии стратегических решений. В результате предложен системный подход, позволяющий формировать рациональные решения по развитию производственной сферы РА при минимизации воздействия на окружающую среду. С помощью предлагаемого подхода, в частности, можно формировать план по оптимальной модернизации предприятий и прогнозировать долгосрочную динамику выбросов вредных веществ в атмосферу.
Ключевые слова: экологическое моделирование, системная динамика, многопараметрическая оптимизация, имитационное моделирование.
The integrated model of eco-economic system on the example of the Republic of Armenia
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 621-631Просмотров за год: 14. Цитирований: 7 (РИНЦ).This article presents an integrated dynamic model of eco-economic system of the Republic of Armenia (RA). This model is constructed using system dynamics methods, which allow to consider the major feedback related to key characteristics of eco-economic system. Such model is a two-objective optimization problem where as target functions the level of air pollution and gross profit of national economy are considered. The air pollution is minimized due to modernization of stationary and mobile sources of pollution at simultaneous maximization of gross profit of national economy. At the same time considered eco-economic system is characterized by the presence of internal constraints that must be accounted at acceptance of strategic decisions. As a result, we proposed a systematic approach that allows forming sustainable solutions for the development of the production sector of RA while minimizing the impact on the environment. With the proposed approach, in particular, we can form a plan for optimal enterprise modernization and predict long-term dynamics of harmful emissions into the atmosphere.
-
Моделирование динамики численности занятого населения в отраслях экономики: агент-ориентированный подход
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 919-937Статья посвящена моделированию динамики численности занятого населения по отраслям экономики как на национальном, так и на региональном уровне. Отсутствие целевого распределения работников в рыночной экономике требует исследования системных процессов на рынке труда, приводящих к различной динамике численности занятых в отраслях экономики. В этом случае значимыми становятся личные стратегии выбора трудовой деятельности экономическими агентами. Наличие различных стратегий приводит к появлению страт на рынке труда с динамично изменяющейся численностью занятых, неравномерно распределенной между отраслями экономики. В результате этого могут наблюдаться нелинейные колебания численности занятого населения, для исследования которых релевантен инструментарий агент-ориентированного моделирования. В статье на примере Еврейской автономной области рассмотрены синхронные и противофазные колебания численности занятых по видам экономической деятельности, обнаруженные во временных рядах статистических данных для 2008–2016 гг. Показано, что такие колебания наблюдаются по возрастным группам работников. Ввиду этого выдвинута гипотеза о том, что агент на рынке труда при выборе места работы руководствуется стратегией, характерной для его возрастной группы, что в итоге прямо влияет на распределение численности занятых различных когорт и общую численность занятых в отраслях экономики. При этом стратегия определяется исходя из социально-экономических характеристик отраслей (различного уровня оплаты труда, условий труда, престижа профессии). Для проверки гипотезы построена базовая агент-ориентированная модель трехотраслевой экономики, в которой учтены различные стратегии экономических агентов, включающие выбор наибольшей заработной платы, наиболее высокого престижа профессии и наилучших условий труда. В результате численных экспериментов показано, что наличие различных стратегий выбора отрасли в совокупности с возрастными предпочтениями работодателей внутри отрасли приводит к периодическим и сложным режимам динамики численности разновозрастных занятых. Такие возрастные предпочтения могут быть вызваны, например, требованием работодателя к наличию трудового стажа и образования. Также сущетвенные изменения возрастной структуры занятого населения могут возникнуть вследствие миграции.
Ключевые слова: занятое население, отрасли экономики, агент-ориентированное моделирование, нелинейная динамика.
Modeling of population dynamics employed in the economic sectors: agent-oriented approach
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 919-937Просмотров за год: 34.The article deals with the modeling of the number of employed population by branches of the economy at the national and regional levels. The lack of targeted distribution of workers in a market economy requires the study of systemic processes in the labor market that lead to different dynamics of the number of employed in the sectors of the economy. In this case, personal strategies for choosing labor activity by economic agents become important. The presence of different strategies leads to the emergence of strata in the labor market with a dynamically changing number of employees, unevenly distributed among the sectors of the economy. As a result, non-linear fluctuations in the number of employed population can be observed, the toolkit of agentbased modeling is relevant for the study of the fluctuations. In the article, we examined in-phase and anti-phase fluctuations in the number of employees by economic activity on the example of the Jewish Autonomous Region in Russia. The fluctuations found in the time series of statistical data for 2008–2016. We show that such fluctuations appear by age groups of workers. In view of this, we put forward a hypothesis that the agent in the labor market chooses a place of work by a strategy, related with his age group. It directly affects the distribution of the number of employed for different cohorts and the total number of employed in the sectors of the economy. The agent determines the strategy taking into account the socio-economic characteristics of the branches of the economy (different levels of wages, working conditions, prestige of the profession). We construct a basic agentoriented model of a three-branch economy to test the hypothesis. The model takes into account various strategies of economic agents, including the choice of the highest wages, the highest prestige of the profession and the best working conditions by the agent. As a result of numerical experiments, we show that the availability of various industry selection strategies and the age preferences of employers within the industry lead to periodic and complex dynamics of the number of different-aged employees. Age preferences may be a consequence, for example, the requirements of employer for the existence of work experience and education. Also, significant changes in the age structure of the employed population may result from migration.
-
Стохастическая модель числа сторонников политического лидера в цифровом публичном пространстве
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 979-997В представленной статье мы исследуем процесс изменения рейтинга одобрения политического лидера под влиянием процессов, протекающих в цифровом публичном пространстве. Драйвером указанных изменений служит взаимодействие пользователей онлайн-площадок (информационных и новостных ресурсов, блогов, социальных сетей), в результате которого они могут обмениваться друг с другом мнениями и формулировать свою позицию в отношении политика. Помимо межличностного взаимодействия мы рассмотрим такие факторы, как информационное воздействие, выражающееся в создании информационного потока, имеющего заданную мощность и тональность (положительную или отрицательную, в контексте влияния на имидж политического лидера), а также наличие группы агентов (лидеров мнений), оказывающих поддержку политику или же, наоборот, негативно влияющих на его представление в медийном пространстве.
Математической основой представленного исследования является модель Кирмана, имеющая истоки в биологии и первоначально нашедшая свое применение в экономике. В рамках даннойм одели считается, что каждый участник находится в одном из двух возможных состояний, а также задается скачкообразный марковский процесс, описывающий переходы между этими состояниями. Для рассматриваемой нами задачи данными состояниями являются 0 или 1, в зависимости от того, является ли конкретный агент сторонником политика и одобряет его деятельность или же нет. Пользуясь аппаратом теории марковских процессов, мы находим его диффузионное приближение, известное как процесс Якоби. При помощи спектрального разложения для инфинитезимального оператора данного процесса мы имеем возможность найти аналитическое представление для плотности переходных вероятностей.
Анализируя вероятности, полученные указанным образом, можно оценить влияние отдельных факторов модели: мощность и тональность новостных сообщений, доступных для пользователей онлайн-пространства и релевантных для задач формирования рейтинга, а также численности сторонников или противников политика. Далее, пользуясь найденными собственными функциями и значениями, мы выводим выражения для оценки условных математических ожиданий рейтинга политика, что может служить основой для построения прогнозов, важных для задач формирования стратегии представления политического лидера в онлайн-среде.
Ключевые слова: рейтинг одобрения, политическое лидерство, информационное воздействие, стадное поведение, марковскийпр оцесс.
Stochastic model of voter dynamics in online media
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.
The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.
Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.
-
Применение методов машинного обучения для сравнения компаний Арктической зоны РФ по экономическим критериям в соответствии с рейтингом Полярного индекса
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 201-215В работе проведен сравнительный анализ предприятий Арктической зоны Российской Федерации (АЗ РФ) по экономическим показателям в соответствии с рейтингом Полярного индекса. В исследование включены числовые данные 193 предприятий, находящихся в АЗ РФ. Применены методы машинного обучения, как стандартные, из открытых ресурсов, так и собственные оригинальные методы — метод оптимально достоверных разбиений (ОДР), метод статистически взвешенных синдромов (СВС). Проведено разбиение с указанием максимального значения функционала качества, в данном исследовании использовалось простейшее семейство разнообразных одномерных разбиений с одной-единственной граничной точкой, а также семейство различных двумерных разбиений с одной граничной точкой по каждой из двух объединяющих переменных. Перестановочные тесты позволяют не только оценивать достоверность данных выявленных закономерностей, но и исключать из множества выявленных закономерностей разбиения с избыточной сложностью.
Использование метода ОДР на одномерных показателях выявило закономерности, которые связывают номер класса с экономическими показателями. Также в приведенном исследовании представлены закономерности, которые выявлены в рамках простейшей одномерной модели с одной граничной точкой и со значимостью не хуже чем $p < 0.001$.
Для достоверной оценки подобной диагностической способности использовали так называемый метод скользящего контроля. В результате этих исследований был выделен целый набор методов, которые обладали достаточной эффективностью.
Коллективный метод по результатам нескольких методов машинного обучения показал высокую значимость экономических показателей для разделения предприятий в соответствии с рейтингом Полярного индекса.
Наше исследование доказало и показало, что те предприятия, которые вошли в топ рейтинга Полярного индекса, в целом распознаются по финансовым показателям среди всех компаний Арктической зоны. Вместе с тем представляется целесообразным включение в анализ также экологических и социальных факторов.
Ключевые слова: методы машинного обучения, устойчивое развитие, Арктическая зона РФ, экономические критерии, Полярный индекс компаний.
Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.
-
Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.
Ключевые слова: гетерогенные агенты, ожидания, идиосинкратические шоки, агрегированная неопределенность, теневая экономика, неформальный сектор экономики, легальный сектор экономики, сектор домашних хозяйств, байесовский метод, общее экономическое равновесие.
Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.
-
Использование методов теории управления для формирования рыночных структур
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 839-859В статье рассматриваются методы формирования рыночных структур при ориентации участников возникающих рынков на максимально возможные темпы роста, а также при ориентации их на максимизацию показателей экономической эффективности. Для первого случая разработан метод достижения желаемой структуры рынка, основанный на использовании принципов теории систем с переменной структурой. Для случая ориентации фирм на достижение максимума NPV рассматривается игровой подход к поддержанию конкурентной среды, основанный на эффективном методе расчета оптимальных по Нэшу–Курно и по Штакельбергу стратегий с помощью аппарата Z-преобразования.
Ключевые слова: рыночные структуры, олигополистические рынки, системы с переменной структурой, динамические игры, оптимальные стратегии.
Control theory methods for creating market structures
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 839-859Просмотров за год: 4. Цитирований: 4 (РИНЦ).Control theory methods for creating market structures are discussed for two cases: when market participants are pursuing aims 1) of maximal growth and 2) of maximum economic efficiency of their firms. For the first case method based on variable structure systems principles is developed. For the second case dynamic game approach is proposed based on computation of Nash–Cournot and Stackelberg strategies with the help of Z-transform.
-
Моделирование межрегиональных миграционных потоков клеточными автоматами
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1467-1483В статье исследуется проблема разработки и обоснования наиболее адекватного инструментария для прогнозирования величины и структуры межрегиональных миграционных потоков. Миграционные процессы оказывают значительное влияние на численность и демографическую структуру населения территорий, состояние и сбалансированность региональных и локальных рынков труда. Для анализа миграционных процессов и оценки их последствий необходим экономикоатематический инструментарий, позволяющий с необходимой точностью моделировать миграционные процессы и потоки для различных территорий. Рассмотрены существующие подходы и методы моделирования миграционных процессов с анализом их преимуществ и недостатков. Отмечается, что для реализации многих из этих методов необходим большой массив агрегированных статистических данных, который не всегда имеется в наличии и не характеризует поведение мигрантов на локальном уровне, на котором принимается решение о переезде на новое место жительства. Это существенно влияет на возможность применения соответствующих методов моделирования миграционных процессов и точность прогнозов величины и структуры миграционных потоков.
В работе разработана и апробирована на данных Приморского края модель клеточного автомата для моделирования межрегиональных миграционных потоков, реализующая интеграцию модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности в общую модель миграционного потока территории. Для реализации модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности предложен интегральный индекс привлекательности регионов с экономической, социальной и экологической составляющими. Для оценки прогностической способности разработанной модели проведено ее сравнение с существующими моделями клеточных автоматов, используемыми для прогнозирования межрегиональных миграционных потоков. Для этих целей был использован метод вневыборочного прогнозирования, который показал статистически значимое превосходство предложенной модели, которая позволяет получать прогнозы и количественные характеристики миграционных потоков территорий на основе реального миграционного поведения домашних хозяйств на локальном уровне с учетом условий их проживания и поведенческих мотивов.
Ключевые слова: миграционные потоки, модели, сравнительный анализ, клеточные автоматы, ограниченная рациональность, точность прогноза.
Modelling interregional migration flows by the cellular automata
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1467-1483The article dwells upon investigating the issue of the most adequate tools developing and justifying to forecast the interregional migration flows value and structure. Migration processes have a significant impact on the size and demographic structure of the population of territories, the state and balance of regional and local labor markets.
To analyze the migration processes and to assess their impact an economic-mathematical tool is required which would be instrumental in modelling the migration processes and flows for different areas with the desired precision. The current methods and approaches to the migration processes modelling, including the analysis of their advantages and disadvantages, were considered. It is noted that to implement many of these methods mass aggregated statistical data is required which is not always available and doesn’t characterize the migrants behavior at the local level where the decision to move to a new dwelling place is made. This has a significant impact on the ability to apply appropriate migration processes modelling techniques and on the projection accuracy of the migration flows magnitude and structure.
The cellular automata model for interregional migration flows modelling, implementing the integration of the households migration behavior model under the conditions of the Bounded Rationality into the general model of the area migration flow was developed and tested based on the Primorye Territory data. To implement the households migration behavior model under the conditions of the Bounded Rationality the integral attractiveness index of the regions with economic, social and ecological components was proposed in the work.
To evaluate the prognostic capacity of the developed model, it was compared with the available cellular automata models used to predict interregional migration flows. The out of sample prediction method which showed statistically significant superiority of the proposed model was applied for this purpose. The model allows obtaining the forecasts and quantitative characteristics of the areas migration flows based on the households real migration behaviour at the local level taking into consideration their living conditions and behavioural motives.
-
Модернизация как глобальный процесс: опыт математического моделирования
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.
При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.
Ключевые слова: модернизация, страны мира, долгосрочная демографическая и экономическая динамика, математическое моделирование.
Modernization as a global process: the experience of mathematical modeling
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 859-873The article analyzes empirical data on the long-term demographic and economic dynamics of the countries of the world for the period from the beginning of the 19th century to the present. Population and GDP of a number of countries of the world for the period 1500–2016 were selected as indicators characterizing the long-term demographic and economic dynamics of the countries of the world. Countries were chosen in such a way that they included representatives with different levels of development (developed and developing countries), as well as countries from different regions of the world (North America, South America, Europe, Asia, Africa). A specially developed mathematical model was used for modeling and data processing. The presented model is an autonomous system of differential equations that describes the processes of socio-economic modernization, including the process of transition from an agrarian society to an industrial and post-industrial one. The model contains the idea that the process of modernization begins with the emergence of an innovative sector in a traditional society, developing on the basis of new technologies. The population is gradually moving from the traditional sector to the innovation sector. Modernization is completed when most of the population moves to the innovation sector.
Statistical methods of data processing and Big Data methods, including hierarchical clustering were used. Using the developed algorithm based on the random descent method, the parameters of the model were identified and verified on the basis of empirical series, and the model was tested using statistical data reflecting the changes observed in developed and developing countries during the period of modernization taking place over the past centuries. Testing the model has demonstrated its high quality — the deviations of the calculated curves from statistical data are usually small and occur during periods of wars and economic crises. Thus, the analysis of statistical data on the long-term demographic and economic dynamics of the countries of the world made it possible to determine general patterns and formalize them in the form of a mathematical model. The model will be used to forecast demographic and economic dynamics in different countries of the world.
-
Оценка качества кластеризации панельных данных с использованием методов Монте-Карло (на примере данных российской региональной экономики)
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1501-1513В работе рассматривается метод исследования панельных данных, основанный на использовании агломеративной иерархической кластеризации — группировки объектов на основании сходства и разли- чия их признаков в иерархию вложенных друг в друга кластеров. Применялись 2 альтернативных способа вычисления евклидовых расстояний между объектами — расстояния между усредненными по интервалу наблюдений значениями и расстояния с использованием данных за все рассматриваемые годы. Сравнивались 3 альтернативных метода вычисления расстояний между кластерами. В первом случае таким расстоянием считается расстояние между ближайшими элементами из двух кластеров, во втором — среднее по парам элементов, в третьем — расстояние между наиболее удаленными элементами. Исследована эффективность использования двух индексов качества кластеризации — индекса Данна и Силуэта для выбора оптимального числа кластеров и оценки статистической значимости полученных решений. Способ оценивания статистической достоверности кластерной структуры заключался в сравнении качества кластеризации, на реальной выборке с качеством кластеризаций на искусственно сгенерированных выборках панельных данных с теми же самыми числом объектов, признаков и длиной рядов. Генерация производилась из фиксированного вероятностного распределения. Использовались способы симуляции, имитирующие гауссов белый шум и случайное блуждание. Расчеты с индексом Силуэт показали, что случайное блуждание характеризуется не только ложной регрессией, но и ложной кластеризацией. Кластеризация принималась достоверной для данного числа выделенных кластеров, если значение индекса на реальной выборке оказывалось больше значения 95%-ного квантиля для искусственных данных. В качестве выборки реальных данных использован набор временных рядов показателей, характеризующих производство в российских регионах. Для этих данных только Силуэт показывает достоверную кластеризацию на уровне $p < 0.05$. Расчеты также показали, что значения индексов для реальных данных в целом ближе к значениям для случайных блужданий, чем для белого шума, но имеют значимые отличия и от тех, и от других. Визуально можно выделить скопления близко расположенных друг от друга в трехмерном признаковом пространстве точек, выделяемые также в качестве кластеров применяемым алгоритмом иерархической кластеризации.
Assessing the validity of clustering of panel data by Monte Carlo methods (using as example the data of the Russian regional economy)
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1501-1513The paper considers a method for studying panel data based on the use of agglomerative hierarchical clustering — grouping objects based on the similarities and differences in their features into a hierarchy of clusters nested into each other. We used 2 alternative methods for calculating Euclidean distances between objects — the distance between the values averaged over observation interval, and the distance using data for all considered years. Three alternative methods for calculating the distances between clusters were compared. In the first case, the distance between the nearest elements from two clusters is considered to be distance between these clusters, in the second — the average over pairs of elements, in the third — the distance between the most distant elements. The efficiency of using two clustering quality indices, the Dunn and Silhouette index, was studied to select the optimal number of clusters and evaluate the statistical significance of the obtained solutions. The method of assessing statistical reliability of cluster structure consisted in comparing the quality of clustering on a real sample with the quality of clustering on artificially generated samples of panel data with the same number of objects, features and lengths of time series. Generation was made from a fixed probability distribution. At the same time, simulation methods imitating Gaussian white noise and random walk were used. Calculations with the Silhouette index showed that a random walk is characterized not only by spurious regression, but also by “spurious clustering”. Clustering was considered reliable for a given number of selected clusters if the index value on the real sample turned out to be greater than the value of the 95% quantile for artificial data. A set of time series of indicators characterizing production in the regions of the Russian Federation was used as a sample of real data. For these data only Silhouette shows reliable clustering at the level p < 0.05. Calculations also showed that index values for real data are generally closer to values for random walks than for white noise, but it have significant differences from both. Since three-dimensional feature space is used, the quality of clustering was also evaluated visually. Visually, one can distinguish clusters of points located close to each other, also distinguished as clusters by the applied hierarchical clustering algorithm.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"