Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование влияния распространения эпидемии и карантина на экономику
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 339-363Эпидемии серьезно дестабилизируют экономику, снижая производительность, ослабляя потребительскую активность и перегружая общественные ресурсы, что часто приводит к экономическим кризисам. Пандемия COVID-19 продемонстрировала ключевую роль нематериальных мер, таких как карантин, в сдерживании распространения инфекционных заболеваний. Данное исследование изучает, как развитие эпидемии и введение карантинных мер влияют на экономическое благополучие населения. С помощью компартментальных моделей на основе обыкновенных дифференциальных уравнений (ОДУ) анализируется взаимосвязь между динамикой заболевания и экономическими последствиями, особенно фокусируясь на том, как различные строгости карантина воздействуют как на распространение болезни, так и на благосостояние населения. Результаты показывают, что эпидемии наносят значительный экономический ущерб, однако своевременные и строгие карантинные меры могут снизить нагрузку на систему здравоохранения, резко уменьшая пик заражений и замедляя развитие эпидемии. Тем не менее, стратегически продуманное ослабление карантина не менее важно для предотвращения повторных вспышек. Исследование выявляет ключевые эпидемиологические пороговые значения, такие как скорость передачи, уровень выздоровления и базовое репродуктивное число $(\mathfrak{R}_0)$, которые определяют эффективность карантина. Аналитически определяется оптимальная доля изолированных лиц, необходимая для минимизации общего числа заражений в условиях постоянного иммунитета. С экономической точки зрения, влияние карантина оценивается через динамику благосостояния населения: показано, что экономические последствия зависят от доли изолированных, но сохраняющих экономическую активность граждан. Чем выше эта доля, тем лучше сохраняется благосостояние даже при фиксированных эпидемиологических параметрах. Эти выводы предоставляют властям практические рекомендации для разработки сбалансированных карантинных стратегий, способных сдерживать распространение болезней и одновременно защищать экономическую стабильность в будущих кризисах.
Modeling the impact of epidemic spread and lockdown on economy
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 339-363Epidemics severely destabilize economies by reducing productivity, weakening consumer spending, and overwhelming public infrastructure, often culminating in economic recessions. The COVID-19 pandemic underscored the critical role of nonpharmaceutical interventions, such as lockdowns, in containing infectious disease transmission. This study investigates how the progression of epidemics and the implementation of lockdown policies shape the economic well-being of populations. By integrating compartmental ordinary differential equation (ODE) models, the research analyzes the interplay between epidemic dynamics and economic outcomes, particularly focusing on how varying lockdown intensities influence both disease spread and population wealth. Findings reveal that epidemics inflict significant economic damage, but timely and stringent lockdowns can mitigate healthcare system overload by sharply reducing infection peaks and delaying the epidemic’s trajectory. However, carefully timed lockdown relaxation is equally vital to prevent resurgent outbreaks. The study identifies key epidemiological thresholds—such as transmission rates, recovery rates, and the basic reproduction number $(\mathfrak{R}0)$ — that determine the effectiveness of lockdowns. Analytically, it pinpoints the optimal proportion of isolated individuals required to minimize total infections in scenarios where permanent immunity is assumed. Economically, the analysis quantifies lockdown impacts by tracking population wealth, demonstrating that economic outcomes depend heavily on the fraction of isolated individuals who remain economically productive. Higher proportions of productive individuals during lockdowns correlate with better wealth retention, even under fixed epidemic conditions. These insights equip policymakers with actionable frameworks to design balanced lockdown strategies that curb disease spread while safeguarding economic stability during future health crises.
-
Простейшая модель лимитированной популяции с половой структурой: результаты моделирования и апробация
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 941-961В данной работе предлагается и исследуется дискретная по времени математическая модель динамики численности популяции с сезонным характером размножения, позволяющая учесть влияние плотностно-зависимой регуляции и половой структуры на динамику численности животных. При построении модели предполагается, что рождаемость популяции зависит от численности самок. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численности популяции экспоненциально уменьшается выживаемость неполовозрелых особей. Проведено аналитическое и численное исследование предложенной модели. Показано, что когда в популяции выживает более половины самок и самцов, то популяция характеризуется устойчивой динамикой в большей части параметрического пространства при весьма высоком коэффициенте рождаемости. При этом колебания возникают, когда лимитирование выживаемости самок более выражено, чем лимитирование выживаемости самцов. Примечательно, что увеличение интенсивности лимитирования выживаемости самцов может стабилизировать динамику популяции, что особенно ярко проявляется при малой доле новорожденных самок. В результате исследования выявлено, что в зависимости от значений популяционных параметров модель может демонстрировать стабильную, периодическую и нерегулярную динамику. При этом возможно возникновение мультистабильности, когда вариация текущей численности в результате внешних факторов может привести к смене наблюдаемого режима динамики. С целью апробации предложенной структурированной модели предложен подход, позволяющий оценивать демографические параметры реальных популяций на основе их общей численности. Ключевая идея заключается в сведении дискретной во времени двухкомпонентной модели динамики численности лимитированной популяции с половой структурой к уравнению с запаздыванием, зависящему только от общей численности. В этом случае начальная половая структура определяется через общую численность популяции и зависит от демографических параметров популяции. Полученное одномерное уравнение применялось к описанию и оценке популяционных параметров, характеризующих половую структуру популяции конкретных видов, а именно охотничьих видов копытных Еврейской автономной области. Продемонстрировано, что уравнение с запаздыванием от общей численности довольно хорошо описывает реальную динамику копытных, улавливая тенденции изменения численности, и, как результат, вполне может применяться к описанию и анализу их динамики. Полученные в рамках работы точечные оценки располагаются в области биологически содержательных значений параметров и демонстрируют динамику численности популяций, подобную наблюдаемой в природе. Показано, что динамика численности популяций лося, косули и кабарги соответствует стабильному типу. Возникающие ежегодные колебания численности копытных в основном обусловлены влиянием внешних факторов и представляют собой отклонения от состояния равновесия. В целом полученные точечные оценки позволяют анализировать динамику структурированной популяции с сопутствующим краткосрочным прогнозом.
Ключевые слова: половая структура, плотностно-зависимые факторы, дискретная во времени модель, оценка параметров, популяционная динамика.
A minimal model of density-dependent population dynamics incorporating sex structure: simulation and application
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 941-961This study proposes and analyzes a discrete-time mathematical model of population dynamics with seasonal reproduction, taking into account the density-dependent regulation and sex structure. In the model, population birth rate depends on the number of females, while density is regulated through juvenile survival, which decreases exponentially with increasing total population size. Analytical and numerical investigations of the model demonstrate that when more than half of both females and males survive, the population exhibits stable dynamics even at relatively high birth rates. Oscillations arise when the limitation of female survival exceeds that of male survival. Increasing the intensity of male survival limitation can stabilize population dynamics, an effect particularly evident when the proportion of female offspring is low. Depending on parameter values, the model exhibits stable, periodic, or irregular dynamics, including multistability, where changes in current population size driven by external factors can shift the system between coexisting dynamic modes. To apply the model to real populations, we propose an approach for estimating demographic parameters based on total abundance data. The key idea is to reduce the two-component discrete model with sex structure to a delay equation dependent only on total population size. In this formulation, the initial sex structure is expressed through total abundance and depends on demographic parameters. The resulting one-dimensional equation was applied to describe and estimate demographic characteristics of ungulate populations in the Jewish Autonomous Region. The delay equation provides a good fit to the observed dynamics of ungulate populations, capturing long-term trends in abundance. Point estimates of parameters fall within biologically meaningful ranges and produce population dynamics consistent with field observations. For moose, roe deer, and musk deer, the model suggests predominantly stable dynamics, while annual fluctuations are primarily driven by external factors and represent deviations from equilibrium. Overall, these estimates enable the analysis of structured population dynamics alongside short-term forecasting based on total abundance data.
-
Моделирование динамики кальция в органических горизонтах почвы
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 103-110В данной работе представлены результаты моделирования круговорота кальция в лесных экосистемах. Кальций является одним из основных элементов минерального питания растений, регулирующим разные метаболические процессы. Его недостаток вызывает нарушения роста тканей растений. Увеличение дефицита кальция в лесных экосистемах появляется вследствие усиления кислотной нагрузки или отчуждения биомассы при вырубках. Модель представляет собой описание круговорота на основе потока вещества между пулами, включая подробное описание почвенной части круговорота – трансформация и минерализация подстилки и др. Для калибровки модели использовались экспериментальные данные по еловым лесам Болгарии.
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Просмотров за год: 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
-
Математическая модель оптимизации с учетом нескольких критериев качества
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 489-502Проведение эффективной региональной политики с целью стабилизации производства невозможно без анализа динамики протекающих экономических процессов. Данная статья посвящена разработке математической модели, отражающей взаимодействие нескольких экономических агентов с учетом их интересов. Разработка такой модели и ее исследование может рассматриваться в качестве важного шага в решении теоретических и практических проблем управления экономическим ростом.
Ключевые слова: математическая модель, экономический рост, многокритериальная задача, экономический агент.
The mathematical optimization model based on several quality criteria
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 489-502Просмотров за год: 7.An effective regional policy in order to stabilize production is impossible without an analysis of the dynamics of economic processes taking place. This article focuses on developing a mathematical model reflecting the interaction of several economic agents with regard to their interests. Developing such a model and its study can be considered as an important step in solving theoretical and practical problems of managing growth.
-
Динамические свойства полинуклеотидной цепи, состоящей из двух неодинаковых однородных последовательностей, разделенных границей
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 241-253Для исследования динамики неоднородной полинуклеотидной цепочки ДНК была использована упрощенная Y-модель с нулевым диссипативным членом. На основе этой модели с помощью численных методов были проведены расчеты, демонстрирующие поведение нелинейного конформационного возмущения (кинка), распространяющегося вдоль неоднородной полинуклеотидной цепи, состоящей из двух разных однородных последовательностей нуклеотидов. Как показал численный анализ, нелинейное возмущение в виде кинка, распространяющееся вдоль рассматриваемой модельной молекулы ДНК, может вести себя тремя разными способами. При достижении границы между двумя однородными последовательностями, состоящими из разных типов оснований, кинк может: а) отразиться, б) пройти границу с ускорением (увеличить скорость), в) пройти границу с замедлением (уменьшить скорость).
The dynamics of polynucleotide chain consisting of two different homogeneous sequences, divided by interface
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 241-253Просмотров за год: 1. Цитирований: 3 (РИНЦ).To research dynamics of inhomogeneous polynucleotide DNA chain the Y-model with no dissipation term was used. Basing on this model using numerical methods calculations were carried out, which have shown the behaviour of nonlinear conformational excitation (kink), spreading along the inhomogeneous polynucleotide chain, consisting of two different homogeneous nucleotide sequences. As numerical analysis shows there are three ways of behaviour of the nonlinear kink excitation spreading along the DNA chain. After reaching the interface between two homogeneous sequences consisting of different types of bases kink can a) reflect, b) pass the interface with acceleration (increase its velocity), c) pass the interface with deceleration (decrease its velocity).
-
Численное моделирование пространственных течений с закруткой потока
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 635-648Данная работа посвящена исследованию закрученных течений. Течения с закруткой потока находят широкое применение в различных технологических процессах. Закрученные течения могут сопровождаться такими нестационарными эффектами, как прецессия вихревого ядра. В свою очередь крупномасштабные пульсации, вызванные прецессией вихря, могут привести к повреждению конструкций и снижению надежности оборудования. Таким образом, для инженерных расчетов требуются подходы, достаточно хорошо описывающие подобные течения. В данной работе представлена методика описания закрученных потоков апробированная в рамках программных комплексов Fluent и SigmaFlow. Проведено численное моделирование нескольких тестовых задач с закруткой потока. Полученные результаты сопоставлены между собой, а также с экспериментальными данными.
Ключевые слова: вычислительная гидродинамика, FLUENT, SIGMAFLOW, уравнения Навье–Стокса, моделирование, турбулентное течение.
Numerical modeling of flows with flow swirling
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 635-648Просмотров за год: 4. Цитирований: 2 (РИНЦ).This paper is devoted to investigation of the swirl flows. Such flows are widely used in various industrial processes. Swirl flows can be accompanied by time-dependent effects, for example, precession of the vortex core. In turn, the large-scale fluctuations due to the precession of the vortex can cause damage of structures and reduce of equipment reliability. Thus, for engineering calculations approaches that sufficiently well described such flows are required. This paper presents the technique of swirl flows calculation, tested for CFD packages Fluent and SigmaFlow. A numerical simulation of several swirl flow test problems was carried out. Obtained results are compared with each other and with the experimental data.
-
Анализ индуцированных шумом пачечных колебаний в двумерной модели Хиндмарш–Розе
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 605-619В работе исследуется стохастическая динамика двумерной модели Хиндмарш–Розе в параметрической зоне сосуществования устойчивых равновесий и предельных циклов. Изучается явление индуцированных шумом переходов между аттракторами. Под воздействием случайных возмущений равновесные и периодические режимы объединяются в пачечные: система демонстрирует чередование малых колебаний около равновесия с осцилляциями больших амплитуд. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности и предлагается метод оценки критических значений интенсивности шума.
Ключевые слова: модель Хиндмарш–Розе, возбудимость, стохастическая чувствительность, индуцированные шумом переходы, пачечные колебания.
Analysis of noise-induced bursting in two-dimensional Hindmarsh–Rose model
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 605-619Просмотров за год: 1.We study the stochastic dynamics of the two-dimensional Hindmarsh–Rose model in the parametrical zone of coexisting stable equilibria and limit cycles. The phenomenon of noise-induced transitions between the attractors is investigated. Under the random disturbances, equilibrium and periodic regimes combine in bursting regime: the system demonstrates an alternation of small fluctuations near the equilibrium with high amplitude oscillations. This effect is analysed using the stochastic sensitivity function technique and a method of estimation of critical values for noise intensity is proposed.
-
Охрана биоресурсов в морском прибрежном пространстве: математическая модель
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1109-1125Охрана водных биоресурсов в морском прибрежном пространстве имеет существенные особенности (большое количество маломерных промысловых судов, динамизм обстановки, использование береговых средств охраны), в силу чего выделяется в отдельный класс прикладных задач. Представлена математическая модель охраны, предназначенная для определения состава средств обнаружения нарушителей и средств реализации обстановки в интересах обеспечения функции сдерживания незаконной деятельности. Решена тактическая теоретико-игровая задача: найден оптимальный рубеж патрулирования (стоянки) средств реализации (катеров охраны) и оптимальное удаление мест промысла нарушителей от берега. С использованием методов теории планирования эксперимента получены линейные регрессионные модели, позволяющие оценить вклад основных факторов, влияющих на результаты моделирования.
В интересах повышения устойчивости и адекватности модели предложено использовать механизм ранжирования средств охраны, основанный на границах и рангах Парето и позволяющий учесть принципы охраны и дополнительные характеристики средств охраны. Для учета изменчивости обстановки предложены несколько сценариев, по которым целесообразно выполнять расчеты.
Ключевые слова: морское прибрежное пространство, водные биоресурсы, математическая модель, оптимизационные задачи, механизм ранжирования, сценарный подход.
Protection of biological resources in the coastal area: the mathematical model
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1109-1125Просмотров за год: 1. Цитирований: 1 (РИНЦ).Protection of aquatic biological resources in the coastal area has significant features (a large number of small fishing vessels, the dynamism of the situation, the use of coastal protection), by virtue of which stands in a class of applications. A mathematical model of protection designed for the determination of detection equipment and means of violators of the situation in order to ensure the function of deterrence of illegal activities. Resolves a tactical game-theoretic problem - find the optimal line patrol (parking) means of implementation (guard boats) and optimal removal of seats from the shore fishing violators. Using the methods of the theory of experimental design, linear regression models to assess the contribution of the main factors affecting the results of the simulation.
In order to enhance the sustainability and adequacy of the model is proposed to use the mechanism of rankings means of protection, based on the borders and the rank and Pareto allows to take into account the principles of protection and further means of protection. To account for the variability of the situation offered several scenarios in which it is advisable to perform calculations.
-
Концентрация мощных акустических пучков в вязкоупругом материале с неоднородным распределением воздушных полостей
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 517-533Известно, что скорость звука в средах, содержащих сильно сжимаемые включения, например воздушные поры в упругой среде или газовые пузырьки в жидкости, может существенно уменьшиться по сравнению с однородной средой. Эффективный нелинейный параметр такой среды, описывающий проявление нелинейных эффектов, возрастает в сотни и тысячи раз из-за большого различия сжимаемости включений и окружающей среды. Пространственное изменение концентрации таких включений приводит к переменной локальной скорости звука, что, в свою очередь, вызывает пространственно-временное перераспределение акустической энергии в волне и искажению ее временных профилей и поперечной структуры ограниченных пучков. В частности, могут образовываться области фокусировок. При определенных условиях возможно формирование звукового канала, обеспечивающего волноводное распространение акустических сигналов в среде с подобными включениями. Таким образом, возможно управление пространственно-временной структурой акустических волн с помощью введения сильно сжимаемых включений с заданным пространственным распределением и концентрацией. Целью работы является исследование распространения акустических волн в резиноподобном материале с неоднородным пространственным распределением воздушных полостей. Основной задачей является развитие адекватной теории таких структурно-неоднородных сред, теории распространения нелинейных акустических волн и пучков в этих средах, расчет акустических полей и выявление связи параметров среды и включений с характеристиками распространяющихся волн. В работе выведено эволюционное самосогласованное уравнение с интегро-дифференциальным членом, описывающее в низкочастотном приближении распространение интенсивных акустических пучков в среде с сильно сжимаемым полостями. В этом уравнении учтено вторичное акустическое поле, вызванное динамикой колебаний полостей. Развит метод, позволяющий получить точные аналитические решения для поля нелинейного акустического пучка на его оси и правильно рассчитать поле в фокальных областях. Полученные результаты применены для теоретического моделирования материала с неоднородным распределением сильно сжимаемых включений.
The concentration of powerful acoustic beams in a viscoelastic medium with non-uniform distribution of the air cavities
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 517-533Просмотров за год: 6.It is known that the sound speed in medium that contain highly compressible inclusions, e.g. air pores in an elastic medium or gas bubbles in the liquid may be significantly reduced compared to a homogeneous medium. Effective nonlinear parameter of medium, describing the manifestation of nonlinear effects, increases hundreds and thousands of times because of the large differences in the compressibility of the inclusions and the medium. Spatial change in the concentration of such inclusions leads to the variable local sound speed, which in turn calls the spatial-temporal redistribution of acoustic energy in the wave and the distortion of its temporal profiles and cross-section structure of bounded beams. In particular, focal areas can form. Under certain conditions, the sound channel is formed that provides waveguide propagation of acoustic signals in the medium with similar inclusions. Thus, it is possible to control spatial-temporal structure of acoustic waves with the introduction of highly compressible inclusions with a given spatial distribution and concentration. The aim of this work is to study the propagation of acoustic waves in a rubberlike material with non-uniform spatial air cavities. The main objective is the development of an adequate theory of such structurally inhomogeneous media, theory of propagation of nonlinear acoustic waves and beams in these media, the calculation of the acoustic fields and identify the communication parameters of the medium and inclusions with characteristics of propagating waves. In the work the evolutionary self-consistent equation with integro-differential term is obtained describing in the low-frequency approximation propagation of intense acoustic beams in a medium with highly compressible cavities. In this equation the secondary acoustic field is taken into account caused by the dynamics of the cavities oscillations. The method is developed to obtain exact analytical solutions for nonlinear acoustic field of the beam on its axis and to calculate the field in the focal areas. The obtained results are applied to theoretical modeling of a material with non-uniform distribution of strongly compressible inclusions.
-
Пространственно-временная динамика и принцип конкурентного исключения в сообществе
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.
Ключевые слова: сообщество, видовая структура, математическая модель, фактор, неустойчивость по Тьюрингу.
Spatiotemporal dynamics and the principle of competitive exclusion in community
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824Просмотров за год: 11.Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





