Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.
Ключевые слова: динамика разреженных газов, бинарные газовые смеси, кинетическое уравнение Больцмана, проекционный метод, численное моделирование, структура ударной волны.
Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.
-
Моделирование нелинейных аэроупругих колебаний стенки канала, взаимодействующей с пульсирующим слоем вязкого газа
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 583-600В работе предложена математическая модель аэроупругих колебаний стенки узкого канала, имеющей нелинейно-упругий подвес и взаимодействующей с пульсирующим слоем вязкого газа. В рамках данной модели определены и исследованы аэроупругий отклик стенки канала и соответствующий ему фазовый сдвиг. Сформулированная авторами модель позволяет одновременно исследовать влияние на колебания стенки нелинейной жесткости ее упругого подвеса, сжимаемости и диссипативных свойств газа, а также инерции его движения в канале под действием пульсирующего перепада давления. Модель разработана на базе постановки и решения плоской начально-краевой задачи математической физики, включающей систему уравнений динамики баротропного вязкого газа, уравнения динамики жесткой стенки как одномассового нелинейного осциллятора. Используя метод возмущений, проведен асимптотический анализ задачи с последующим решением уравнений динамики тонкого слоя вязкого газа методом итерации. В результате определен закон распределения давления газа в канале и исходная задача аэроупругости сведена к исследованию обобщенного уравнения Дуффинга. Его решение осуществлено методом гармонического баланса, что позволило определить аэроупругий и фазовый отклики стенки канала в виде неявных функций. Проведено численное исследование данных откликов для оценки влияния инерции движения газа и его сжимаемости, а также сравнение полученных результатов с частными случаями ползущего движения вязкого газа и несжимаемой вязкой жидкости. Результаты проведенного исследования показали важность одновременного учета сжимаемости и инерции движения вязкого газа при моделировании аэроупругих колебаний стенки рассматриваемого канала.
Ключевые слова: моделирование, вязкий газ, нелинейные аэроупругие колебания, стенка канала, пульсирующий перепад давления, аэроупругий отклик, фазовый сдвиг.
Modeling of nonlinear aeroelastic oscillations of a channel wall interacting with a pulsating viscous gas layer
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 583-600The mathematical model for aeroelastic oscillations of a narrow channel wall with a nonlinear-elastic suspension and interacting with a pulsating viscous gas layer is proposed. Within the framework of this model, the aeroelastic response of the channel wall and its phase response were determined and investigated. The authors simultaneously studied the influence of the nonlinear stiffness elastic suspension of the wall, compressibility and dissipative properties of gas, as well as the inertia of its motion on the wall oscillations. The model was elaborated based on the formulation and solution of the initial boundary-value plane problem of mathematical physics. The problem governing equations include the equations of dynamics for barotropic viscous gas, equation of dynamics for the rigid wall as the spring-mass nonlinear oscillator. Using the perturbation method, the asymptotic analysis of the problem was carried out. The solution of the equations of dynamics for the thin layer of viscous gas was obtained by the iteration method. As a result, the law of gas pressure distribution in the channel was determined and the initial problem of aeroelasticity was reduced to the study of the generalized Duffing equation. Its solution was realized by the harmonic balance method, which allowed us to determine the aeroelastic and phase responses of the channel wall in the form of implicit functions. The numerical study of these responses was carried out to evaluate the influence for inertia of gas motion and its compressibility, as well as a comparison of the results obtained with the special cases of creeping motion of viscous gas and incompressible viscous fluid. The results of this study have shown the importance of simultaneous consideration of compressibility and inertia of viscous gas motion when modeling aeroelastic oscillations of the considered channel wall.
-
Математическое моделирование разветвленных гидравлических систем
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 173-179Решение задачи стационарного потокораспределения для произвольной гидросистемы без объемов со свободным уровнем может быть сведено к поиску экстремумов функции многих переменных. В качестве этой функции используется функция Релея, выраженная через гидравлические характеристики участков рассматриваемой системы. Она же является функцией Ляпунова при исследовании устойчивости найденных стационарных режимов работы гидросистемы прямым методом Ляпунова.
Mathematical modelling of branched hydraulic systems
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 173-179Просмотров за год: 7. Цитирований: 1 (РИНЦ).Solving the problem of stationary stream distribution for an arbitrary volume-free hydrosystem with a free level can be reduced to determining the extremes of a multi-variable function. Rayleigh function expressed in terms of the hydraulic characteristics of the parts of the system in question is used as such a function. The same function is Lyapunov function when analyzing the stability of the determined stationary operational modes of a hydrosystem using the direct Lyapunov method.
-
Математическое моделирование магнитной системы методом регуляризации по А. Н. Тихонову
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 165-175В данной работе решается задача поиска конструкции магнитной системы для создания магнитного поля с требуемыми характеристиками в заданной области. На основе анализа математической модели магнитной системы предлагается достаточно общий подход к решению нелинейной обратной задачи, которая описывается уравнением Фредгольма H(z) = ∫SIJ(s)G(z, s)ds, z ∈ S H, s ∈ S I . Необходимо определить распределение плотности тока J(s), а также расстановку источников тока для создания поля H(z). В работе предлагается метод решения этих задачс помощью регуляризованных итерационных процессов. На примере конкретной магнитной системы проводится численное исследование влияния различных факторов на характер создаваемого магнитного поля.
Mathematical modelling of the magnetic system by A. N. Tikhonov regularization method
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 165-175In this paper the problem of searching for the design of the magnetic system for creation a magnetic field with the required characteristics in the given area is solved. On the basis of analysis of the mathematical model of the magnetic system rather a general approach is proposed to the solving of the inverse problem, which is written by the Fredgolm equation H(z) = ∫SIJ(s)G(z, s)ds, z ∈ S H, s ∈ S I . It was necessary to define the current density distribution function J(s) and the existing winding geometry for creation of a required magnetic field H(z). In the paper a method of solving those by means of regularized iterative processes is proposed. On the base of the concrete magnetic system we perform the numerical study of influence of different factors on the character of the magnetic field being designed.
-
Численные исследования нестационарных режимов сопряженной естественной конвекции в пористой цилиндрической области (модель Дарси–Буссинеска)
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 179-191Проведено математическое моделирование нестационарных режимов естественной конвекции в замкнутой пористой цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного теплообмена с внешней средой. Краевая задача математической физики, сформулированная на основе модели Дарси–Буссинеска в безразмерных переменных «функция тока – температура», реализована численно методом конечных разностей. Детально проанализировано влияние проницаемости пористой среды 10–5≤Da<∞, отношения толщины твердой оболочки к внутреннему радиусу цилиндра 0.1≤h/L≤0.3, относительного коэффициента теплопроводности 1≤λ1,2≤20 и безразмерного времени 0≤τ≤1000 как на локальные распределения изолиний функции тока и температуры, так и на интегральные комплексы, отражающие интенсивность конвективного течения и теплопереноса.
Ключевые слова: сопряженный теплоперенос, естественная конвекция, приближение Дарси–Буссинеска, пористая цилиндрическая полость, нестационарный режим, численное моделирование.
Numerical simulation of unsteady conjugate natural convection in a cylindrical porous domain (Darcy–Boussinesq model)
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 179-191Просмотров за год: 4. Цитирований: 3 (РИНЦ).Mathematical simulation on unsteady natural convection in a closed porous cylindrical cavity having finite thickness heat-conducting solid walls in conditions of convective heat exchange with an environment has been carried out. A boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function and temperature on the basis of Darcy–Boussinesq model has been solved by finite difference method. Effect of a porous medium permeability 10–5≤Da<∞, ratio between a solid wall thickness and the inner radius of a cylinder 0.1≤h/L≤0.3, a thermal conductivity ratio 1≤λ1,2≤20 and a dimensionless time on both local distributions of isolines and isotherms and integral complexes reflecting an intensity of convective flow and heat transfer has been analyzed in detail.
-
Высокопроизводительные вычисления на гибридных системах: будут ли решены «задачи большого вызова»?
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 429-437На примере расчета течений проводится анализ возможностей современных гибридных распределенных вычислительных систем для расчета «задач большого вызова». Приводятся соображения, что только многоуровневый комплексный подход к такой проблеме позволит эффективно масштабировать подобные задачи. Подход подразумевает использование новых математических моделей процессов переноса, разделение на динамическом уровне явлений переноса и внутренних процессов и использование новых парадигм программирования, учитывающих особенности современных гибридных систем.
Ключевые слова: гибридная система, «задачи большого вызова», тензорная математика, аэрогидродинамика, вычислительный эксперимент.
High performance computations on hybrid systems: will "grand challenges" be solved?
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 429-437Просмотров за год: 7. Цитирований: 8 (РИНЦ).Based on CFD computations we provide the analysis of the possibilities for using modern hybrid distributed computational environments for large complex system simulation. We argue that only multilevel approach supported by new mathematical models of transport properties, dynamical representation of the problem with transport and internal processes separated, and modern paradigm of programming, taking into account specific properties of heterogeneous system, will make it possible to scale the problem effectively.
-
Математическое моделирование интервально стохастических тепловых процессов в технических системах при интервальной неопределенности определяющих параметров
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 501-520Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.
Ключевые слова: математическое моделирование, тепловой процесс, техническая система, интервальный, стохастический, нелинейный, нестационарный, статистические меры, математическое ожидание, дисперсия, ковариация.
Mathematical modeling of the interval stochastic thermal processes in technical systems at the interval indeterminacy of the determinative parameters
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 501-520Просмотров за год: 15. Цитирований: 6 (РИНЦ).The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.
-
Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.
Ключевые слова: популяционная динамика, нелинейные параболические уравнения, косимметрия, сосуществование видов, метод конечных разностей.
The cosymmetric approach to the analysis of spatial structure of populations with amount of taxis
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 661-671Просмотров за год: 2. Цитирований: 1 (РИНЦ).We consider a mathematical model describing the competition for a heterogeneous resource of two populations on a one-dimensional area. Distribution of populations is governed by diffusion and directed migration, species growth obeys to the logistic law. We study the corresponding problem of nonlinear parabolic equations with variable coefficients (function of a resource, parameters of growth, diffusion and migration). Approach on the theory the cosymmetric dynamic systems of V. Yudovich is applied to the analysis of population patterns. Conditions on parameters for which the problem under investigation has nontrivial cosymmetry are analytically derived. Numerical experiment is used to find an emergence of continuous family of steady states when cosymmetry takes place. The numerical scheme is based on the finite-difference discretization in space using the balance method and integration on time by Runge-Kutta method. Impact of diffusive and migration parameters on scenarios of distribution of populations is studied. In the vicinity of the line, corresponding to cosymmetry, neutral curves for diffusive parameters are calculated. We present the mappings with areas of diffusive parameters which correspond to scenarios of coexistence and extinction of species. For a number of migration parameters and resource functions with one and two maxima the analysis of possible scenarios is carried out. Particularly, we found the areas of parameters for which the survival of each specie is determined by initial conditions. It should be noted that dynamics may be nontrivial: after starting decrease in densities of both species the growth of only one population takes place whenever another specie decreases. The analysis has shown that areas of the diffusive parameters corresponding to various scenarios of population patterns are grouped near the cosymmetry lines. The derived mappings allow to explain, in particular, effect of a survival of population due to increasing of diffusive mobility in case of starvation.
-
Оптимизация судовых обводов для снижения сопротивления движению
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 57-65Оптимизация судовых обводов для снижения сопротивления движению является актуальной задачей гидродинамики судна. Однако вопросы проектирования и совершенствования обводов в современной практике все еще слабо обобщены и формализованы. Они решаются с помощью комбинации научных знаний, инженерного опыта и критериев из области искусства. Практическое использование экспериментального и численного моделирования в задачах оптимизации формы корпуса обычно сводится к методу проб и ошибок. В статье представлен новый метод оптимизации обводов, предназначенный для детального совершенствования формы корпуса, концепция которого использует теоретические закономерности формирования волновой системы судна. Метод предусматривает систематическое варьирование продольного распределения полноты корпуса при фиксации или контроле ее вертикального распределения. Как известно, вертикальное распределение водоизмещения не имеет оптимума по волновому сопротивлению, которое является основным активным компонентом, особенно в отношении формы носовой части. Варьирование продольного распределения водоизмещения предусмотрено путем задания конечных приращений водоизмещения на строевой по шпангоутам, которые затем переносятся на теоретический чертеж с помощью специальных методов трансформации шпангоутов и реализуются в 3D-моделях корпуса. Для оценки влияния модификаций геометрии на сопротивление используется численное моделирование буксировки полученных моделей. Дальнейшие оптимизационные процедуры базируются на выдвинутой гипотезе о независимости влияния различных участков корпуса, выделенных по длине, на буксировочное сопротивление. В результате применения метода к форме корпуса хорошо известного судна KCS, рекомендованного конференцией «Гетеборг-2000» в качестве эталонного объекта для тестирования численных методов, получены оптимальное продольное распределение полноты и соответствующие обводы корпуса, которые позволили снизить его сопротивление на 8.9 %. Оптимизация выполнена на базе результатов по шести моделям с вариациями формы, которые обусловили колебания полного сопротивления корпуса разного знака, величиной 1.3–6.5 %. Визуализация волновых систем показала, что при снижении сопротивления происходит заметное ослабление поперечных волн и усиление расходящихся.
Ключевые слова: моделирование обтекания корпуса, оптимизация судовых обводов, численное моделирование буксировки.
Optimization of a hull form for decrease ship resistance to movement
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 57-65Просмотров за год: 10. Цитирований: 1 (РИНЦ).Optimization of hull lines for the minimum resistance to movement is a problem of current interest in ship hydrodynamics. In practice, lines design is still to some extent an art. The usual approaches to decrease the ship resistance are based on the model experiment and/or CFD simulation, following the trial and error method. The paper presents a new method of in-detail hull form design based on the wave-based optimization approach. The method provides systematic variation of the hull geometrical form, which corresponds to alteration of longitudinal distribution of the hull volume, while its vertical volume distribution is fixed or highly controlled. It’s well known from the theoretical studies that the vertical distribution can't be optimized by condition of minimum wave resistance, thus it can be neglected for the optimization procedures. The method efficiency was investigated by application to the foreship of KCS, the well-known test object from the workshop Gothenburg-2000. The variations of the longitudinal distribution of the volume were set on the sectional area curve as finite volume increments and then transferred to the lines plan with the help of special frame transformation methods. The CFD towing simulations were carried out for the initial hull form and the six modified variants. According to the simulation results, examined modifications caused the resistance increments in the range 1.3–6.5 %. Optimization process was underpinned with the respective data analysis based on the new hypothesis, according to which, the resistance increments caused by separate longitudinal segments of hull form meet the principle of superposition. The achieved results, which are presented as the optimum distribution of volume present in the optimized designed hull form, which shows the interesting characteristics that its resistance has decrease by 8.9 % in respect to initial KCS hull form. Visualization of the wave patterns showed an attenuation of the transversal wave components, and the intensification of the diverging wave components.
-
Стабилизирующая роль структуры рыбной популяции в условиях промысла при случайных воздействиях среды обитания
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 609-620Исследуется влияние промысла на структурированную рыбную популяцию в случайным образом меняющихся условиях среды обитания. Параметры популяции соответствуют массовым видам пелагических рыб дальневосточных морей северо-западной части Тихого океана (минтай, сельдь, сардина). В различных частях Мирового океана обитают похожие виды рыб. В качестве основного признака принимается различие особей по размеру. Это легко измеряемая в промысловых условиях характеристика, она достаточно хорошо определяет основные свойства особей: возраст, половозрелость, другие морфологические и физиологические особенности. Флуктуации внешней среды оказывают существенное влияние на особей в ранних стадиях развития, во взрослом состоянии наблюдающиеся изменения во внешней среде слабо влияют на жизнедеятельность особей. Характеристики промысла выбираются оптимальными с точки зрения дохода от него. Основной управляющей характеристикой промысла являются промысловые усилия. Зависимость дохода от количества промысловых усилий выбрана квадратичной в части затрат от промысла, что соответствует экономическим представлениям о росте затрат при увеличении объемов производства. Модельное исследование показывает, что структура популяции обеспечивает повышенную стабильность популяции. В процессе роста особей и их выбывания из-за естественной смертности сглаживаются колебания плотности численности, возникающие из-за сильного влияния на особей флуктуаций среды обитания на ранних стадиях развития. Сглаживающую роль играет диффузионная составляющая процессов роста. В свою очередь, промысел обладает сглаживающим воздействием по отношению к изменениям (в том числе и стохастическим) среды обитания, существенно влияющим на обилие молоди и последующую динамику обилия популяции рыб. В сравнении с оптимальным переменным по интенсивности промыслом исследован постоянный по интенсивности режим промысла. При этом оказалось, что в динамичных условиях среды и стохастической динамике численности пополнения существует постоянное по времени промысловое усилие, по эффективности близкое к оптимальному переменному промыслу. Это означает, что постоянный или слабо меняющийся по количеству промысловых усилий промысел может оказаться весьма эффективным с точки зрения дохода.
Ключевые слова: математическая модель, популяция, размер особи, флуктуации среды обитания, оптимальный сбор урожая, рыболовство, промысловое усилие, доход.
The stabilizing role of fish population structure under the influence of fishery and random environment variations
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 609-620Просмотров за год: 6. Цитирований: 2 (РИНЦ).We study the influence of fishery on a structured fish population under random changes of habitat conditions. The population parameters correspond to dominant pelagic fish species of Far-Eastern seas of the northwestern part of the Pacific Ocean (pollack, herring, sardine). Similar species inhabit various parts of the Word Ocean. The species body size distribution was chosen as a main population feature. This characteristic is easy to measure and adequately defines main specimen qualities such as age, maturity and other morphological and physiological peculiarities. Environmental fluctuations have a great influence on the individuals in early stages of development and have little influence on the vital activity of mature individuals. The fishery revenue was chosen as an optimality criterion. The main control characteristic is fishing effort. We have chosen quadratic dependence of fishing revenue on the fishing effort according to accepted economic ideas stating that the expenses grow with the production volume. The model study shows that the population structure ensures the increased population stability. The growth and drop out of the individuals’ due to natural mortality smoothens the oscillations of population density arising from the strong influence of the fluctuations of environment on young individuals. The smoothing part is played by diffusion component of the growth processes. The fishery in its turn smooths the fluctuations (including random fluctuations) of the environment and has a substantial impact upon the abundance of fry and the subsequent population dynamics. The optimal time-dependent fishing effort strategy was compared to stationary fishing effort strategy. It is shown that in the case of quickly changing habitat conditions and stochastic dynamics of population replenishment there exists a stationary fishing effort having approximately the same efficiency as an optimal time-dependent fishing effort. This means that a constant or weakly varying fishing effort can be very efficient strategy in terms of revenue.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"