Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'density-dependent factors':
Найдено статей: 8
  1. Бабаков А.В., Чечёткин В.М.
    Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643

    Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.

    Babakov A.V., Chechetkin V.M.
    Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643

    The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.

    Просмотров за год: 27.
  2. Андрущенко В.А., Моисеева Д.С., Моторин А.А., Ступицкий Е.Л.
    Моделирование физических процессов воздействия мощного ядерного взрыва на астероид
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 861-877

    В рамках проблемы предотвращения астероидно-кометной угрозы выполнен физический и теоретический анализ процессов воздействия различных факторов надповерхностного ядерного взрыва достаточно высокой энергии на астероид во внеатмосферных условиях космического пространства. Показано, что в соответствии с энергией и проницаемой способностью плазмы продуктов взрыва, рентгеновского и гамма-нейтронного излучения на поверхности астероида, обращенной к взрыву, образуется слоистая структура с разной плотностью энергии, зависящей от угловых координат. Для каждого слоя выяснен временной характер трансформации энергии внутри него и определены роли различных фото- и столкновительных процессов. Воздействие высокоскоростного потока плазмы носит эрозионный характер, при этом импульс плазмы передается астероиду. Показано, что в тонком слое поглощения рентгеновского излучения вещество астероида разогревается до высоких температур, и в результате его расширения формируется импульс отдачи, который не является определяющим из-за малой массы расширяющейся высокотемпературной плазмы. Расчеты показали, что основной импульс, полученный астероидом, связан с уносом разогретого слоя вещества, образованного нейтронным потоком (7.5 · 1014 г · см/с). Показано, что астероид с радиусом ~100 м приобретает при этом скорость ≈ 100 см/с. Расчеты выполнены с учетом затрат энергии взрыва на разрушение аморфной структуры вещества астероида (~1 эВ/атом = 3.8 · 1010 эрг/г) и на ионизацию в области высокотемпературного слоя. На основе аналогичного анализа получено приближенное выражение для оценки среднего размера осколков при возможном разрушении астероида ударными волнами, образующимися внутри него под действием импульсов давления. Выполнен физический эксперимент в лабораторных условиях, имитирующий фрагментацию каменного астероида и подтвердивший справедливость полученной зависимости от выбранных значений определенных параметров. В результате численных исследований воздействия взрыва, произведенных на различном расстоянии от поверхности астероида, показано, что учет реальной геометрии отколочного слоя дает оптимальную высоту для формирования максимального импульса астероида примерно в 1.5 раза большую, чем аналогичные оценки по упрощенной модели. Предложена двухэтапная концепция воздействия ядерных взрывов на астероид с использованием радиолокационных средств наведения. Проанализировано возможное влияние возникающих ионизационных помех на радиолокационное слежение за разлетом крупных осколков астероида в условиях пространственно-временной эволюции всех элементов исследуемой динамической системы.

    Andruschenko V.A., Moiseeva D.S., Motorin A.A., Stupitsky E.L.
    Modeling the physical processes of a powerful nuclear explosion on an asteroid
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 861-877

    As part of the paper, a physical and theoretical analysis of the impact processes of various factors of a highaltitude and high-energy nuclear explosion on the asteroid in extra-atmospheric conditions of open space is done. It is shown that, in accordance with the energy and permeability of the plasma of explosion products, X-ray and gamma-neutron radiation, a layered structure with a different energy density depending on angular coordinates is formed on the surface of the asteroid. The temporal patterns of the energy transformation for each layer is clarified and the roles of various photo- and collision processes are determined. The effect of a high-speed plasma flow is erosive in nature, and the plasma pulse is transmitted to the asteroid. The paper presents that in a thin layer of x-ray absorption, the asteroid substance is heated to high temperatures and as a result of its expansion, a recoil impulse is formed, which is not decisive due to the small mass of the expanding high-temperature plasma. Calculations shows that the main impulse received by an asteroid is associated with the entrainment of a heated layer of a substance formed by a neutron flux (7.5 E 1014 g E cm/s). It is shown that an asteroid with a radius of ~100 m acquires a velocity of . 100 cm/s. The calculations were performed taking into account the explosion energy spent on the destruction of the amorphous structure of the asteroid material (~1 eV/atom = 3.8 E 1010 erg/g) and ionization in the region of the high-temperature layer. Based on a similar analysis, an approximation is obtained for estimating the average size of fragments in the event of the possible destruction of the asteroid by shock waves generated inside it under the influence of pressure impulses. A physical experiment was conducted in laboratory conditions, simulating the fragmentation of a stone asteroid and confirming the validity of the obtained dependence on the selected values of certain parameters. As a result of numerical studies of the effects of the explosion, carried out at different distances from the surface of the asteroid, it is shown that taking into account the real geometry of the spallation layer gives the optimal height for the formation of the maximum asteroid momentum by a factor of 1.5 greater than similar estimates according to the simplified model. A two-stage concept of the impact of nuclear explosions on an asteroid using radar guidance tools is proposed. The paper analyzes the possible impact of the emerging ionization interference on the radar tracking of the movement of large fragments of the asteroid in the space-time evolution of all elements of the studied dynamic system.

  3. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П.
    Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151

    Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.

    Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Просмотров за год: 40. Цитирований: 2 (РИНЦ).
  4. В работе выделены два значимых геометрических параметра, влияющих на интерполяцию физических величин, в методе гидродинамики сглаженных частиц (SPH). Это коэффициент сглаживания, связывающий размер частицы с величиной радиуса сглаживания, и коэффициент объема, позволяющий корректно определять массу частицы при заданном распределении частиц в среде.

    Предложена методика оценки влияния означенных параметров на точность интерполяций в методе SPH при решении гидростатической задачи. Для оценки точности численного решения вводятся аналитические функции относительной погрешности восстановления плотности и градиента давления в среде. Функции погрешности зависят от коэффициента сглаживания и коэффициента объема. Выбор конкретной интерполяции метода SPH позволяет преобразовать дифференциальную форму функций погрешности к форме алгебраического полинома. Корни такого полинома дают значения коэффициента сглаживания, обеспечивающие минимальную погрешность соответствующей интерполяции при заданном коэффициенте объема.

    В работе осуществлены вывод и анализф ункций относительных погрешностей плотности и градиента давления на выборке популярных ядер с различными радиусами сглаживания. Установлено, что для всех рассмотренных ядер не существует общего значения коэффициента сглаживания, обеспечивающего минимальную погрешность обеих SPH-интерполяций. Выделены представители ядер с различными радиусами сглаживания, позволяющие обеспечить наименьшие погрешности SPH-интерполяций при решении гидростатической задачи. Также определены некоторые ядра, не позволяющие обеспечить корректное интерполирование при решении гидростатической задачи методом SPH.

    Potapov I.I., Reshetnikova O.V.
    The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 979-992

    The two significant geometric parameters are proposed that affect the physical quantities interpolation in the smoothed particle hydrodynamics method (SPH). They are: the smoothing coefficient which the particle size and the smoothing radius are connecting and the volume coefficient which determine correctly the particle mass for a given particles distribution in the medium.

    In paper proposes a technique for these parameters influence assessing on the SPH method interpolations accuracy when the hydrostatic problem solving. The analytical functions of the relative error for the density and pressure gradient in the medium are introduced for the accuracy estimate. The relative error functions are dependent on the smoothing factor and the volume factor. Designating a specific interpolation form in SPH method allows the differential form of the relative error functions to the algebraic polynomial form converting. The root of this polynomial gives the smoothing coefficient values that provide the minimum interpolation error for an assigned volume coefficient.

    In this work, the derivation and analysis of density and pressure gradient relative errors functions on a sample of popular nuclei with different smoothing radius was carried out. There is no common the smoothing coefficient value for all the considered kernels that provides the minimum error for both SPH interpolations. The nuclei representatives with different smoothing radius are identified which make it possible the smallest errors of SPH interpolations to provide when the hydrostatic problem solving. As well, certain kernels with different smoothing radius was determined which correct interpolation do not allow provide when the hydrostatic problem solving by the SPH method.

  5. Айнбиндер Р.М., Рассадин А.Э.
    О миграции популяции по экологической нише с пространственно неоднородной локальной емкостью
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 483-500

    Статья посвящена описанию процесса миграции некоторой популяции с учетом пространственной неоднородности локальной емкости экологической ниши. Предполагается, что эта пространственная неоднородность обусловлена различными природными или искусственными факторами. Математическая модель рассматриваемого процесса миграции представляет собой задачу Коши на прямой для некоторого квазилинейного уравнения в частных производных первого порядка, которому удовлетворяет линейная плотность численности рассматриваемой популяции. В данной работе найдено общее решение этой задачи Коши для произвольной зависимости локальной емкости экологической ниши от пространственной координаты. Это общее решение было применено для описания миграции рассматриваемой популяции в двух различных случаях: в случае зависимости локальной емкости экологической ниши от пространственной координаты в виде гладкой ступеньки и в случае холмообразной зависимости локальной емкости экологической ниши от пространственной координаты. В обоих случаях решение задачи Коши выражается через высшие трансцендентные функции. Наложением специальных соотношений на параметры модели эти высшие трансцендентные функции сводятся к элементарным функциям, что позволяет получить точные решения модели в явном виде, выраженные через элементарные функции. С помощью этих точных решений реализована обширная программа вычислительных экспериментов, показывающих, как начальная плотность популяции гауссовской формы рассеивается на рассмотренных двух видах пространственной неоднородности локальной емкости экологической ниши. Эти вычислительные эксперименты показали, что при прохождении и через ступенеобразную, и через холмообразную пространственную неоднородность локальной емкости экологической ниши с узкой, по сравнению с характерным пространственным масштабом этих неоднородностей, шириной гауссоиды ее начальной плотности система забывает свое начальное состояние. В частности, если интерпретировать исследуемую систему как популяцию, обитающую в протяженной спокойной прямолинейной реке вдоль ее русла, то можно утверждать, что при таком начальном условии после того, как течение этой реки пронесет рассматриваемую популяцию через область пространственной неоднородности локальной емкости экологической ниши, плотность численности популяции становится квазипрямоугольной функцией.

    Ainbinder R.M., Rassadin A.E.
    On population migration in an ecological niche with a spatially heterogeneous local capacity
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 483-500

    The article describes the migration process of a certain population, taking into account the spatial heterogeneity of the local capacity of the ecological niche. It is assumed that this spatial heterogeneity is caused by various natural or artificial factors. The mathematical model of the migration process under consideration is a Cauchy problem on a straight line for some quasi-linear partial differential equation of the first order, which is satisfied by the linear population density under consideration. In this paper, a general solution to this Cauchy problem is found for an arbitrary dependence of the local capacity of an ecological niche on the spatial coordinate. This general solution was applied to describe the migration of the population in question in two different cases: in the case of a dependence of the local capacity of the ecological niche on the spatial coordinate in the form of a smooth step and in the case of a hill-like dependence of the local capacity of the ecological niche on the spatial coordinate. In both cases, the solution to the Cauchy problem is expressed in terms of higher transcendental functions. By applying special relations to the model parameters, these higher transcendental functions are reduced to elementary functions, which makes it possible to obtain exact model solutions explicitly expressed in terms of elementary functions. With the help of these precise solutions, an extensive program of computational experiments has been implemented, showing how the initial population density of the Gaussian form is dispersed by the considered two types of spatial heterogeneity of the local capacity of the ecological niche. These computational experiments have shown that when passing through both step-like and hill-like spatial inhomogeneities of the local capacity of an ecological niche with a narrow Gaussian width of its initial density compared to the characteristic spatial scale of these inhomogeneities, the system forgets its initial state. In particular, if we interpret the system under study as a population living in an extended calm rectilinear river along its bed, then it can be argued that under this initial condition, after the current of this river carries the population under consideration through the area of spatial heterogeneity of the local capacity of the ecological niche, the population density becomes a quasi-rectangular function.

  6. Ревуцкая О.Л., Неверова Г.П., Фрисман Е.Я.
    Простейшая модель лимитированной популяции с половой структурой: результаты моделирования и апробация
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 941-961

    В данной работе предлагается и исследуется дискретная по времени математическая модель динамики численности популяции с сезонным характером размножения, позволяющая учесть влияние плотностно-зависимой регуляции и половой структуры на динамику численности животных. При построении модели предполагается, что рождаемость популяции зависит от численности самок. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численности популяции экспоненциально уменьшается выживаемость неполовозрелых особей. Проведено аналитическое и численное исследование предложенной модели. Показано, что когда в популяции выживает более половины самок и самцов, то популяция характеризуется устойчивой динамикой в большей части параметрического пространства при весьма высоком коэффициенте рождаемости. При этом колебания возникают, когда лимитирование выживаемости самок более выражено, чем лимитирование выживаемости самцов. Примечательно, что увеличение интенсивности лимитирования выживаемости самцов может стабилизировать динамику популяции, что особенно ярко проявляется при малой доле новорожденных самок. В результате исследования выявлено, что в зависимости от значений популяционных параметров модель может демонстрировать стабильную, периодическую и нерегулярную динамику. При этом возможно возникновение мультистабильности, когда вариация текущей численности в результате внешних факторов может привести к смене наблюдаемого режима динамики. С целью апробации предложенной структурированной модели предложен подход, позволяющий оценивать демографические параметры реальных популяций на основе их общей численности. Ключевая идея заключается в сведении дискретной во времени двухкомпонентной модели динамики численности лимитированной популяции с половой структурой к уравнению с запаздыванием, зависящему только от общей численности. В этом случае начальная половая структура определяется через общую численность популяции и зависит от демографических параметров популяции. Полученное одномерное уравнение применялось к описанию и оценке популяционных параметров, характеризующих половую структуру популяции конкретных видов, а именно охотничьих видов копытных Еврейской автономной области. Продемонстрировано, что уравнение с запаздыванием от общей численности довольно хорошо описывает реальную динамику копытных, улавливая тенденции изменения численности, и, как результат, вполне может применяться к описанию и анализу их динамики. Полученные в рамках работы точечные оценки располагаются в области биологически содержательных значений параметров и демонстрируют динамику численности популяций, подобную наблюдаемой в природе. Показано, что динамика численности популяций лося, косули и кабарги соответствует стабильному типу. Возникающие ежегодные колебания численности копытных в основном обусловлены влиянием внешних факторов и представляют собой отклонения от состояния равновесия. В целом полученные точечные оценки позволяют анализировать динамику структурированной популяции с сопутствующим краткосрочным прогнозом.

    Revutskaya O.L., Neverova G.P., Frisman E.Y.
    A minimal model of density-dependent population dynamics incorporating sex structure: simulation and application
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 941-961

    This study proposes and analyzes a discrete-time mathematical model of population dynamics with seasonal reproduction, taking into account the density-dependent regulation and sex structure. In the model, population birth rate depends on the number of females, while density is regulated through juvenile survival, which decreases exponentially with increasing total population size. Analytical and numerical investigations of the model demonstrate that when more than half of both females and males survive, the population exhibits stable dynamics even at relatively high birth rates. Oscillations arise when the limitation of female survival exceeds that of male survival. Increasing the intensity of male survival limitation can stabilize population dynamics, an effect particularly evident when the proportion of female offspring is low. Depending on parameter values, the model exhibits stable, periodic, or irregular dynamics, including multistability, where changes in current population size driven by external factors can shift the system between coexisting dynamic modes. To apply the model to real populations, we propose an approach for estimating demographic parameters based on total abundance data. The key idea is to reduce the two-component discrete model with sex structure to a delay equation dependent only on total population size. In this formulation, the initial sex structure is expressed through total abundance and depends on demographic parameters. The resulting one-dimensional equation was applied to describe and estimate demographic characteristics of ungulate populations in the Jewish Autonomous Region. The delay equation provides a good fit to the observed dynamics of ungulate populations, capturing long-term trends in abundance. Point estimates of parameters fall within biologically meaningful ranges and produce population dynamics consistent with field observations. For moose, roe deer, and musk deer, the model suggests predominantly stable dynamics, while annual fluctuations are primarily driven by external factors and represent deviations from equilibrium. Overall, these estimates enable the analysis of structured population dynamics alongside short-term forecasting based on total abundance data.

  7. Гиричева Е.Е., Абакумов А.И.
    Пространственно-временная динамика и принцип конкурентного исключения в сообществе
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824

    Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.

    Giricheva E.E., Abakumov A.I.
    Spatiotemporal dynamics and the principle of competitive exclusion in community
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824

    Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.

    Просмотров за год: 11.
  8. Светлов К.В., Иванов С.А.
    Стохастическая модель числа сторонников политического лидера в цифровом публичном пространстве
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 979-997

    В представленной статье мы исследуем процесс изменения рейтинга одобрения политического лидера под влиянием процессов, протекающих в цифровом публичном пространстве. Драйвером указанных изменений служит взаимодействие пользователей онлайн-площадок (информационных и новостных ресурсов, блогов, социальных сетей), в результате которого они могут обмениваться друг с другом мнениями и формулировать свою позицию в отношении политика. Помимо межличностного взаимодействия мы рассмотрим такие факторы, как информационное воздействие, выражающееся в создании информационного потока, имеющего заданную мощность и тональность (положительную или отрицательную, в контексте влияния на имидж политического лидера), а также наличие группы агентов (лидеров мнений), оказывающих поддержку политику или же, наоборот, негативно влияющих на его представление в медийном пространстве.

    Математической основой представленного исследования является модель Кирмана, имеющая истоки в биологии и первоначально нашедшая свое применение в экономике. В рамках даннойм одели считается, что каждый участник находится в одном из двух возможных состояний, а также задается скачкообразный марковский процесс, описывающий переходы между этими состояниями. Для рассматриваемой нами задачи данными состояниями являются 0 или 1, в зависимости от того, является ли конкретный агент сторонником политика и одобряет его деятельность или же нет. Пользуясь аппаратом теории марковских процессов, мы находим его диффузионное приближение, известное как процесс Якоби. При помощи спектрального разложения для инфинитезимального оператора данного процесса мы имеем возможность найти аналитическое представление для плотности переходных вероятностей.

    Анализируя вероятности, полученные указанным образом, можно оценить влияние отдельных факторов модели: мощность и тональность новостных сообщений, доступных для пользователей онлайн-пространства и релевантных для задач формирования рейтинга, а также численности сторонников или противников политика. Далее, пользуясь найденными собственными функциями и значениями, мы выводим выражения для оценки условных математических ожиданий рейтинга политика, что может служить основой для построения прогнозов, важных для задач формирования стратегии представления политического лидера в онлайн-среде.

    Svetlov K.V., Ivanov S.A.
    Stochastic model of voter dynamics in online media
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997

    In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.

    The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.

    Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.