Текущий выпуск Номер 7, 2024 Том 16

Все выпуски

Результаты поиска по 'data similarity':
Найдено статей: 23
  1. Коганов А.В., Ракчеева Т.А., Приходько Д.И.
    Сравнительный анализ адаптации человека к росту объема зрительной информации в задачах распознавания формальных символов и содержательных изображений
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 571-586

    Мы описываем инженерно-психологический эксперимент, продолжающий исследование способов адаптации человека к росту сложности логических задач методом предъявления серий задач нарастающей сложности, которая определяется объемом исходных данных. Задачи требуют вычислений в ассоциативной или неассоциативной системе операций. По характеру изменения времени решения задачи в зависимости от числа необходимых операций можно делать вывод о чисто последовательном способе решения задач или о подключении к решению дополнительных ресурсов мозга в параллельном режиме. В ранее опубликованной экспериментальной работе человек в процессе решения ассоциативной задачи распознавал цветные картинки с содержательными изображениями. В новом исследовании аналогичная задача решается для абстрактных монохромных геометрических фигур. Анализ результата показал, что для второго случая значительно снижается вероятность перехода испытуемого на параллельный способ обработки зрительной информации. Метод исследования основан на предъявлении человеку задач двух типов. Один тип задач содержит ассоциативные вычисления и допускает параллельный алгоритм решения. Другой тип задач контрольный, содержит задачи, в которых вычисления неассоциативные и параллельные алгоритмы решения неэффективны. Задача распознавания и поиска заданного объекта ассоциативна. Параллельная стратегия значительно ускоряет решение при сравнительно малых дополнительных затратах ресурсов. В качестве контрольной серии задач (для отделения параллельной работы от ускорения последовательного алгоритма) используется, как и в предыдущем эксперименте, неассоциативная задача сравнения в циклической арифметике, представленной в наглядной форме игры «камень, ножницы, бумага». В этой задаче параллельный алгоритм требует работы большого числа процессоров с малым коэффициентом эффективности. Поэтому переход человека на параллельный алгоритм решения этой задачи практически исключен и ускорение обработки входной информации возможно только путем повышения быстродействия. Сравнение зависимости времени решения от объема исходных данных для двух типов задач позволяет выявить четыре типа стратегий адаптации к росту сложности задачи: равномерная последовательная, ускоренная последовательная, параллельные вычисления (там, где это возможно) или неопределенная (для данного метода) стратегия. Уменьшение части испытуемых, которые переходят на параллельную стратегию при кодировании входной информации формальными изображениями, показывает эффективность кодов, вызывающих предметные ассоциации. Они повышают скорость восприятия и переработки информации человеком. Статья содержит предварительную математическую модель, которая объясняет это явление. Она основана на появлении второго набора исходных данных, который возникает у человека в результате узнавания изображенных предметов.

    Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Comparative analysis of human adaptation to the growth of visual information in the tasks of recognizing formal symbols and meaningful images
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 571-586

    We describe an engineering-psychological experiment that continues the study of ways to adapt a person to the increasing complexity of logical problems by presenting a series of problems of increasing complexity, which is determined by the volume of initial data. Tasks require calculations in an associative or non-associative system of operations. By the nature of the change in the time of solving the problem, depending on the number of necessary operations, we can conclude that a purely sequential method of solving problems or connecting additional brain resources to the solution in parallel mode. In a previously published experimental work, a person in the process of solving an associative problem recognized color images with meaningful images. In the new study, a similar problem is solved for abstract monochrome geometric shapes. Analysis of the result showed that for the second case, the probability of the subject switching to a parallel method of processing visual information is significantly reduced. The research method is based on presenting a person with two types of tasks. One type of problem contains associative calculations and allows a parallel solution algorithm. Another type of problem is the control one, which contains problems in which calculations are not associative and parallel algorithms are ineffective. The task of recognizing and searching for a given object is associative. A parallel strategy significantly speeds up the solution with relatively small additional resources. As a control series of problems (to separate parallel work from the acceleration of a sequential algorithm), we use, as in the previous experiment, a non-associative comparison problem in cyclic arithmetic, presented in the visual form of the game “rock, paper, scissors”. In this problem, the parallel algorithm requires a large number of processors with a small efficiency coefficient. Therefore, the transition of a person to a parallel algorithm for solving this problem is almost impossible, and the acceleration of processing input information is possible only by increasing the speed. Comparing the dependence of the solution time on the volume of source data for two types of problems allows us to identify four types of strategies for adapting to the increasing complexity of the problem: uniform sequential, accelerated sequential, parallel computing (where possible), or undefined (for this method) strategy. The Reducing of the number of subjects, who switch to a parallel strategy when encoding input information with formal images, shows the effectiveness of codes that cause subject associations. They increase the speed of human perception and processing of information. The article contains a preliminary mathematical model that explains this phenomenon. It is based on the appearance of a second set of initial data, which occurs in a person as a result of recognizing the depicted objects.

  2. Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

    Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

  3. Темлякова Е.А., Джелядин Т.Р., Камзолова С.Г., Сорокин А.А.
    Система хранения профилей физических свойств ДНК на примере промоторов Escherichia coli
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 443-450

    В данной работе нами представлена база данных, спроектированная для хранения профилей физических свойств вдоль двойной спирали ДНК, и продемонстрировано ее использование для хранения, поиска и анализа промоторных последовательностей E. coli. Отличительным свойством предложенной базы данных является то, что весь профиль хранится как единый объект, который с точки зрения СУБД полностью подобен строке или числу. Такие объекты СУБД может сравнивать друг с другом и осуществлять быструю выборку на основании индексов. В базу данных загружена информация о 1227 известных промоторах. Для каждого промотора сохранена нуклеотидная последовательность, а также вычислен и загружен в базу профиль электростатического потенциала промоторной ДНК. Кроме того, каждый промотор связан с генами, транскипцию которых он регулирует, а также с записями о сайтах посадки транскрипционных факторов, влияющих на функционирование промотора. Организован доступ к базе данных через интернет; исходные коды доступны для скачивания, а содержимое базы данных может быть выслано авторами по запросу.

    Temlyakova E.A., Dzhelyadin T.R., Kamzolova S.G., Sorokin A.A.
    System to store DNA physical properties profiles with application to the promoters of Escherichia coli

    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 443-450

    Database to store, search and retrieve DNA physical properties profiles has been developed and its use for analysis of E. coli promoters has been demonstrated. Unique feature of the database is in its ability to handle whole profile as single internal object type in a way similar to integers or character strings. To demonstrate utility of such database it was populated with data of 1227 known promoters, their nucleotide sequence, profile of electrostatic potential, transcription factor binding sites. Each promoter is also connected to all genes, whose transcription is controlled by that promoter. Content of the database is available for search via web interface. Source code of profile datatype and library to work with it from R/Bioconductor are available from the internet, dump of the database is available from authors by request.

    Просмотров за год: 3.
  4. Леонов А.В., Колтовская Е.В., Чичерина О.В.
    Биогидрохимический портрет Белого моря
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 125-160

    Биогидрохимический портрет Белого моря построен с помощью расчетов на CNPSi-модели по систематизированным среднемноголетним наблюдениям (среднемесячные гидрометеорологические, гидрохимические и гидробиологические параметры морской среды). Также в расчетах использована уточненная информация о выносе в морские акватории биогенных веществ со стоком основных рекритоков (Нива, Онега, Северная Двина, Мезень, Кемь, Кереть). Параметры морской среды — значения температуры, освещенности, прозрачности, биогенной нагрузки. Для девяти районов моря (заливы Кандалакшский, Онежский, Двинский, Мезенский, Соловецкие о-ва, Бассейн, Горло, Воронка, губа Чупа) характеристики портрета моря включают: изменение в течение года концентраций органических и минеральных соединений биогенных элементов (С, N, P, Si), биомассы организмов низших трофических звеньев (гетеротрофные бактерии, диатомовый фитопланктон, растительноядный и хищный зоопланктон) и другие показатели (скорости изменения концентраций веществ и биомасс организмов, внутренние и внешние потоки веществ, балансы отдельных веществ и биогенных элементов в целом). Расчетные по среднемноголетним данным показатели состояния морской среды (температура воды, соотношения минеральных фракций N < P) и доминирующего диатомового фитопланктона в море (обилие, продукция, биомасса, содержание хлорофилла а) сравнивали с результатами отдельных съемок (за 1972–1991 и 2007–2012 гг.) по районам моря. При очевидных отличиях способов оценки значений показателей (по наблюдениям — аналитические методы, а при расчетах на модели — вычисления по соответствующим уравнениям) отмечена близость расчетных показателей состояния фитопланктона приведенным в литературе данным по фитопланктону Белого моря. Так, литературные оценки годовой продукции диатомовых водорослей в Белом море находятся в пределах 1.5–3 млн т С (при продолжительности вегетации 180 сут), а по расчетам она составляет ~2 и 3.5 млн т С при принимаемых периодах вегетации в 150 и 180 сут соответственно.

    Leonov A.V., Kоltovskaya Е.V., Chicherina О.V.
    Biohydrochemical portrait of the White Sea
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 125-160

    The biohydrochemical portrait of the White Sea is constructed on the CNPSi-model calculations based on long-term mean annual observations (average monthly hydrometeorological, hydrochemical and hydrobiological parameters of the marine environment) as well as on updated information on the nutrient input to the sea with the runoff of the main river tributaries (Niva, Onega, Northern Dvina, Mezen, Kem, Keret). Parameters of the marine environment are temperature, light, transparency, and biogenic load. Ecological characteristics of the sea “portrait” were calculated for nine marine areas (Kandalaksha, Onega, Dvinsky, Mezensky Bays, Solovetsky Islands, Basin, Gorlot, Voronka, Chupa Bay), these are: the concentration changes of organic and mineral compounds of biogenic elements (C, N, P, Si), the biomass of organisms of the lower trophic level (heterotrophic bacteria, diatomic phytoplankton, herbivorous and predatory zooplankton) and other ones (rates of substance concentration and organism biomass changes, internal and external substance flows, balances of individual substances and nutrients as a whole). Parameters of the marine environment state (water temperature, ratio of mineral fractions N < P) and dominant diatom phytoplankton in the sea (abundance, production, biomass, chlorophyll content a) were calculated and compared with the results of individual surveys (for 1972–1991 and 2007–2012) of the White Sea water areas. The methods for estimating the values of these parameters from observations and calculations differ, however, the calculated values of the phytoplankton state are comparable with the measurements and are similar to the data given in the literature. Therefore, according to the literature data, the annual production of diatoms in the White Sea is estimated at 1.5–3 million tons C (at a vegetation period of 180 days), and according to calculations it is ~2 and 3.5 million tons C for vegetation period of 150 and 180 days respectively.

    Просмотров за год: 15. Цитирований: 1 (РИНЦ).
  5. Аристов В.В., Строганов А.В., Ястребов А.Д.
    Применение модели кинетического типа для изучения пространственного распространения COVID-19
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627

    Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.

    Aristov V.V., Stroganov A.V., Yastrebov A.D.
    Application of the kinetic type model for study of a spatial spread of COVID-19
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627

    A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.

  6. Яковлев А.А., Абакумов А.И., Костюшко А.В., Маркелова Е.В.
    Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426

    При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.

    Yakovlev A.A., Abakumov A.I., Kostyushkо A.V., Markelova E.V.
    Cytokines as indicators of the state of the organism in infectious diseases. Experimental data analysis
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1409-1426

    When person`s diseases is result of bacterial infection, various characteristics of the organism are used for observation the course of the disease. Currently, one of these indicators is dynamics of cytokine concentrations are produced, mainly by cells of the immune system. There are many types of these low molecular weight proteins in human body and many species of animals. The study of cytokines is important for the interpretation of functional disorders of the body's immune system, assessment of the severity, monitoring the effectiveness of therapy, predicting of the course and outcome of treatment. Cytokine response of the body indicating characteristics of course of disease. For research regularities of such indication, experiments were conducted on laboratory mice. Experimental data are analyzed on the development of pneumonia and treatment with several drugs for bacterial infection of mice. As drugs used immunomodulatory drugs “Roncoleukin”, “Leikinferon” and “Tinrostim”. The data are presented by two types cytokines` concentration in lung tissue and animal blood. Multy-sided statistical ana non statistical analysis of the data allowed us to find common patterns of changes in the “cytokine profile” of the body and to link them with the properties of therapeutic preparations. The studies cytokine “Interleukin-10” (IL-10) and “Interferon Gamma” (IFN$\gamma$) in infected mice deviate from the normal level of infact animals indicating the development of the disease. Changes in cytokine concentrations in groups of treated mice are compared with those in a group of healthy (not infected) mice and a group of infected untreated mice. The comparison is made for groups of individuals, since the concentrations of cytokines are individual and differ significantly in different individuals. Under these conditions, only groups of individuals can indicate the regularities of the processes of the course of the disease. These groups of mice were being observed for two weeks. The dynamics of cytokine concentrations indicates characteristics of the disease course and efficiency of used therapeutic drugs. The effect of a medicinal product on organisms is monitored by the location of these groups of individuals in the space of cytokine concentrations. The Hausdorff distance between the sets of vectors of cytokine concentrations of individuals is used in this space. This is based on the Euclidean distance between the elements of these sets. It was found that the drug “Roncoleukin” and “Leukinferon” have a generally similar and different from the drug “Tinrostim” effect on the course of the disease.

  7. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Захарова Е.М.
    Разработка и исследование жесткого алгоритма анализа публикаций в Twitter и их влияния на движение рынка криптовалют
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 157-170

    Посты в социальных сетях являются важным индикатором, отображающим положение активов на финансовом рынке. В статье описывается жесткое решение задачи классификации для определения влияния активности в социальных сетях на движение финансового рынка. Отбираются аккаунты авторитетных в сообществе крипто-трейдеров-инфлюенсеров. В качестве данных используются специальные пакеты сообщений, которые состоят из текстовых постов, взятых из Twitter. Приведены способы предобработки текста, заключающиеся в лемматизации Stanza и применении регулярных выражений, для очищения зашумленных текстов, особенностью которых является многочисленное употребление сленговых слов и сокращений. Решается задача бинарной классификации, где слово рассматривается как элемент вектора единицы данных. Для более точного описания криптовалютной активности ищутся наилучшие параметры разметки для обработки свечей Binance. Методы выявления признаков, необходимых для точного описания текстовых данных и последующего процесса установления зависимости, представлены в виде машинного обучения и статистического анализа. В качестве первого используется отбор признаков на основе критерия информативности, который применяется при разбиении решающего дерева на поддеревья. Такой подход реализован в модели случайного леса и актуален для задачи выбора значимых для «стрижки деревьев» признаков. Второй же основан на жестком составлении бинарного вектора в ходе грубой проверки наличия либо отсутствия слова в пакете и подсчете суммы элементов этого вектора. Затем принимается решение в зависимости от преодоления этой суммой порогового значения, базирующегося на уровне, предварительно подобранном с помощью анализа частотного распределения упоминаний слова. Алгоритм, используемый для решения проблемы, был назван бенчмарком и проанализирован в качестве инструмента. Подобные алгоритмы часто используются в автоматизированных торговых стратегиях. В процессе исследования также описаны наблюдения влияния часто встречающихся в тексте слов, которые используются в качестве базиса размерностью 2 и 3 при векторизации.

    Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Zakharova E.M.
    Development of and research into a rigid algorithm for analyzing Twitter publications and its influence on the movements of the cryptocurrency market
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 157-170

    Social media is a crucial indicator of the position of assets in the financial market. The paper describes the rigid solution for the classification problem to determine the influence of social media activity on financial market movements. Reputable crypto traders influencers are selected. Twitter posts packages are used as data. The methods of text, which are characterized by the numerous use of slang words and abbreviations, and preprocessing consist in lemmatization of Stanza and the use of regular expressions. A word is considered as an element of a vector of a data unit in the course of solving the problem of binary classification. The best markup parameters for processing Binance candles are searched for. Methods of feature selection, which is necessary for a precise description of text data and the subsequent process of establishing dependence, are represented by machine learning and statistical analysis. First, the feature selection is used based on the information criterion. This approach is implemented in a random forest model and is relevant for the task of feature selection for splitting nodes in a decision tree. The second one is based on the rigid compilation of a binary vector during a rough check of the presence or absence of a word in the package and counting the sum of the elements of this vector. Then a decision is made depending on the superiority of this sum over the threshold value that is predetermined previously by analyzing the frequency distribution of mentions of the word. The algorithm used to solve the problem was named benchmark and analyzed as a tool. Similar algorithms are often used in automated trading strategies. In the course of the study, observations of the influence of frequently occurring words, which are used as a basis of dimension 2 and 3 in vectorization, are described as well.

  8. Васюков А.В., Беклемышева К.А., Онучин Е.С., Товарнова Н.А., Петров И.Б.
    Расчет скорости поперечной волны при ударе по предварительно нагруженным нитям
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 887-897

    В работе рассматривается задача о поперечном ударе по тонкой предварительно нагруженной нити. Общепринятая теория о поперечному даре по тонкой нити отталкивается от классических публикаций Рахматулина и Смита. На основании теории Рахматулина – Смита получены соотношения, широко используемые в инженерной практике. Однако существуют многочисленные данные о том, что экспериментальные результаты могут существенно отличаться от оценок, сделанных на базе этих соотношений. Краткий обзор факторов, которые вызывают отличия, приведен в тексте статьи.

    Основное внимание в данной статье уделяется скорости поперечной волны, формирующейся при ударе, так как только ее можно непосредственно наблюдать и измерять с помощью высокоскоростной съемки или иных методов. Рассматривается влияние предварительного натяжения нити на скорость волны. Данный фактор важен, так как он неизбежно возникает в результатах натурных испытаний в силу того, что надежное закрепление и точное позиционирование нити на экспериментальной установке требует некоторого ее натяжения. В данной работе показано, что предварительная деформация нити существенно влияет на скорость поперечной волны, возникающей в ходе ударного взаимодействия.

    Выполнены расчеты серии постановок для нитей Kevlar 29 и Spectra 1000. Для различных уровней начального натяжения получены скорости поперечных волн. Приведено прямое сравнение численных результатов и аналитических оценок с данными экспериментов. Для рассмотренных постановок скорость поперечной волны в свободной и в нагруженной нити отличалась практически в два раза. Таким образом, показано, что измерения, основанные на высокоскоростной съемке и анализе наблюдаемых поперечных волн, должны учитывать предварительную деформацию нити.

    В работе предложена формула для быстрой оценки скорости поперечной волны в натянутых нитях. Данная формула получена из основных соотношений теории Рахматулина – Смита в предположении большой начальной деформации нити. На примере рассмотренных постановок для Kevlar 29 и Spectra 1000 показано, что полученная формула может давать существенно лучшие результаты, чем классическое приближение. Также показано, что прямой численный расчет дает результаты, которые оказываются значительно ближе к экспериментальным данным, чем любая из рассмотренных аналитических оценок.

    Vasyukov A.V., Beklemysheva K.A., Onuchin E.S., Tovarnova N.A., Petrov I.B.
    Calculation of transverse wave speed in preloaded fibres under an impact
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 887-897

    The paper considers the problem of transverse impact on a thin preloaded fiber. The commonly accepted theory of transverse impact on a thin fiber is based on the classical works of Rakhmatulin and Smith. The simple relations obtained from the Rakhmatulin – Smith theory are widely used in engineering practice. However, there are numerous evidences that experimental results may differ significantly from estimations based on these relations. A brief overview of the factors that cause the differences is given in this article.

    This paper focuses on the shear wave velocity, as it is the only feature that can be directly observed and measured using high-speed cameras or similar methods. The influence of the fiber preload on the wave speed is considered. This factor is important, since it inevitably arises in the experimental results. The reliable fastening and precise positioning of the fiber during the experiments requires its preload. This work shows that the preload significantly affects the shear wave velocity in the impacted fiber.

    Numerical calculations were performed for Kevlar 29 and Spectra 1000 yarns. Shear wave velocities are obtained for different levels of initial tension. A direct comparison of numerical results and analytical estimations with experimental data is presented. The speed of the transverse wave in free and preloaded fibers differed by a factor of two for the setup parameters considered. This fact demonstrates that measurements based on high-speed imaging and analysis of the observed shear waves should take into account the preload of the fibers.

    This paper proposes a formula for a quick estimation of the shear wave velocity in preloaded fibers. The formula is obtained from the basic relations of the Rakhmatulin – Smith theory under the assumption of a large initial deformation of the fiber. The formula can give significantly better results than the classical approximation, this fact is demonstrated using the data for preloaded Kevlar 29 and Spectra 1000. The paper also shows that direct numerical calculation has better corresponding with the experimental data than any of the considered analytical estimations.

  9. В работе рассматривается метод исследования панельных данных, основанный на использовании агломеративной иерархической кластеризации — группировки объектов на основании сходства и разли- чия их признаков в иерархию вложенных друг в друга кластеров. Применялись 2 альтернативных способа вычисления евклидовых расстояний между объектами — расстояния между усредненными по интервалу наблюдений значениями и расстояния с использованием данных за все рассматриваемые годы. Сравнивались 3 альтернативных метода вычисления расстояний между кластерами. В первом случае таким расстоянием считается расстояние между ближайшими элементами из двух кластеров, во втором — среднее по парам элементов, в третьем — расстояние между наиболее удаленными элементами. Исследована эффективность использования двух индексов качества кластеризации — индекса Данна и Силуэта для выбора оптимального числа кластеров и оценки статистической значимости полученных решений. Способ оценивания статистической достоверности кластерной структуры заключался в сравнении качества кластеризации, на реальной выборке с качеством кластеризаций на искусственно сгенерированных выборках панельных данных с теми же самыми числом объектов, признаков и длиной рядов. Генерация производилась из фиксированного вероятностного распределения. Использовались способы симуляции, имитирующие гауссов белый шум и случайное блуждание. Расчеты с индексом Силуэт показали, что случайное блуждание характеризуется не только ложной регрессией, но и ложной кластеризацией. Кластеризация принималась достоверной для данного числа выделенных кластеров, если значение индекса на реальной выборке оказывалось больше значения 95%-ного квантиля для искусственных данных. В качестве выборки реальных данных использован набор временных рядов показателей, характеризующих производство в российских регионах. Для этих данных только Силуэт показывает достоверную кластеризацию на уровне $p < 0.05$. Расчеты также показали, что значения индексов для реальных данных в целом ближе к значениям для случайных блужданий, чем для белого шума, но имеют значимые отличия и от тех, и от других. Визуально можно выделить скопления близко расположенных друг от друга в трехмерном признаковом пространстве точек, выделяемые также в качестве кластеров применяемым алгоритмом иерархической кластеризации.

    Kirilyuk I.L., Sen'ko O.V.
    Assessing the validity of clustering of panel data by Monte Carlo methods (using as example the data of the Russian regional economy)
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1501-1513

    The paper considers a method for studying panel data based on the use of agglomerative hierarchical clustering — grouping objects based on the similarities and differences in their features into a hierarchy of clusters nested into each other. We used 2 alternative methods for calculating Euclidean distances between objects — the distance between the values averaged over observation interval, and the distance using data for all considered years. Three alternative methods for calculating the distances between clusters were compared. In the first case, the distance between the nearest elements from two clusters is considered to be distance between these clusters, in the second — the average over pairs of elements, in the third — the distance between the most distant elements. The efficiency of using two clustering quality indices, the Dunn and Silhouette index, was studied to select the optimal number of clusters and evaluate the statistical significance of the obtained solutions. The method of assessing statistical reliability of cluster structure consisted in comparing the quality of clustering on a real sample with the quality of clustering on artificially generated samples of panel data with the same number of objects, features and lengths of time series. Generation was made from a fixed probability distribution. At the same time, simulation methods imitating Gaussian white noise and random walk were used. Calculations with the Silhouette index showed that a random walk is characterized not only by spurious regression, but also by “spurious clustering”. Clustering was considered reliable for a given number of selected clusters if the index value on the real sample turned out to be greater than the value of the 95% quantile for artificial data. A set of time series of indicators characterizing production in the regions of the Russian Federation was used as a sample of real data. For these data only Silhouette shows reliable clustering at the level p < 0.05. Calculations also showed that index values for real data are generally closer to values for random walks than for white noise, but it have significant differences from both. Since three-dimensional feature space is used, the quality of clustering was also evaluated visually. Visually, one can distinguish clusters of points located close to each other, also distinguished as clusters by the applied hierarchical clustering algorithm.

  10. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

    Nikitiuk A.S.
    Parameter identification of viscoelastic cell models based on force curves and wavelet transform
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672

    Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.