Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'data similarity':
Найдено статей: 27
  1. Бештоков М.Х.
    Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373

    В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.

    Beshtokov M.K.
    Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373

    The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.

  2. Кащенко Н.М., Ишанов С.А., Мациевский С.В.
    Моделирование развития экваториальных плазменных пузырей из плазменных облаков
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 463-476

    В работе определяются и изучаются два параметра процесса развития экваториальных плазменных пузырей (ЭПП): максимальная скорость внутри ЭПП и время развития ЭПП. Исследования проводятся для случаев, когда ЭПП возникают из одной, двух или трех зон повышенной концентрации, или начальных плазменных облаков. Механизмом развития ЭПП является неустойчивость Релея–Тэйлора (НРТ). Ранее было выяснено, что время начальной стадии развития ЭПП должно уложиться в интервал времени, благоприятный для формирования ЭПП (в этом случае линейный инкремент нарастания больше нуля). Этот интервал укладывается для экваториальной ионосферы Земли в промежуток от 3000 с до 7000 с.

    Исследование проводилось в форме многочисленных вычислительных экспериментов с использованием разработанной авторами оригинальной двумерной математической и численной модели MI2 развития НРТ в экваториальной ионосфере Земли, аналогичной стандартной модели США SAMI2. Эта численно-математическая модель MI2 достаточно подробно описана в основном тексте статьи. Результаты, полученные в ходе проведенных исследований, могут быть использованы как в других теоретических работах, так и при планировании и проведении натурных экспериментов по генерации F-рассеяния в ионосфере Земли.

    Численное моделирование проводилось для геофизических условий, благоприятных для развития в экваториальной F-области ионосферы Земли ЭПП в результате НРТ. Численные исследования подтвердили, что время развития ЭПП из начальных неоднородностей с повышенной концентрацией существенно больше времени развития из зон пониженной концентрации. Однако в условиях, благоприятных для НРТ, ЭПП успевают достигнуть достаточно развитого состояния. Численные эксперименты также продемонстрировали, что развитые неоднородности сильно и нелинейно взаимодействуют между собой даже тогда, когда начальные плазменные облака сильно удалены друг от друга. Причем это взаимодействие более сильное, чем при развитии ЭПП из начальных неоднородностей с пониженной концентрацией. Результаты численных экспериментов показали хорошее согласие параметров развитых ЭПП с экспериментальными данными и с теоретическими исследованиями других авторов.

    Kashchenko N.M., Ishanov S.A., Matsievsky S.V.
    Simulation equatorial plasma bubbles started from plasma clouds
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 463-476

    Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable.

    A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000–7000 c for the Earth equatorial ionosphere.

    Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere.

    Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors.

    Просмотров за год: 14.
  3. Коганов А.В., Ракчеева Т.А., Приходько Д.И.
    Сравнительный анализ адаптации человека к росту объема зрительной информации в задачах распознавания формальных символов и содержательных изображений
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 571-586

    Мы описываем инженерно-психологический эксперимент, продолжающий исследование способов адаптации человека к росту сложности логических задач методом предъявления серий задач нарастающей сложности, которая определяется объемом исходных данных. Задачи требуют вычислений в ассоциативной или неассоциативной системе операций. По характеру изменения времени решения задачи в зависимости от числа необходимых операций можно делать вывод о чисто последовательном способе решения задач или о подключении к решению дополнительных ресурсов мозга в параллельном режиме. В ранее опубликованной экспериментальной работе человек в процессе решения ассоциативной задачи распознавал цветные картинки с содержательными изображениями. В новом исследовании аналогичная задача решается для абстрактных монохромных геометрических фигур. Анализ результата показал, что для второго случая значительно снижается вероятность перехода испытуемого на параллельный способ обработки зрительной информации. Метод исследования основан на предъявлении человеку задач двух типов. Один тип задач содержит ассоциативные вычисления и допускает параллельный алгоритм решения. Другой тип задач контрольный, содержит задачи, в которых вычисления неассоциативные и параллельные алгоритмы решения неэффективны. Задача распознавания и поиска заданного объекта ассоциативна. Параллельная стратегия значительно ускоряет решение при сравнительно малых дополнительных затратах ресурсов. В качестве контрольной серии задач (для отделения параллельной работы от ускорения последовательного алгоритма) используется, как и в предыдущем эксперименте, неассоциативная задача сравнения в циклической арифметике, представленной в наглядной форме игры «камень, ножницы, бумага». В этой задаче параллельный алгоритм требует работы большого числа процессоров с малым коэффициентом эффективности. Поэтому переход человека на параллельный алгоритм решения этой задачи практически исключен и ускорение обработки входной информации возможно только путем повышения быстродействия. Сравнение зависимости времени решения от объема исходных данных для двух типов задач позволяет выявить четыре типа стратегий адаптации к росту сложности задачи: равномерная последовательная, ускоренная последовательная, параллельные вычисления (там, где это возможно) или неопределенная (для данного метода) стратегия. Уменьшение части испытуемых, которые переходят на параллельную стратегию при кодировании входной информации формальными изображениями, показывает эффективность кодов, вызывающих предметные ассоциации. Они повышают скорость восприятия и переработки информации человеком. Статья содержит предварительную математическую модель, которая объясняет это явление. Она основана на появлении второго набора исходных данных, который возникает у человека в результате узнавания изображенных предметов.

    Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Comparative analysis of human adaptation to the growth of visual information in the tasks of recognizing formal symbols and meaningful images
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 571-586

    We describe an engineering-psychological experiment that continues the study of ways to adapt a person to the increasing complexity of logical problems by presenting a series of problems of increasing complexity, which is determined by the volume of initial data. Tasks require calculations in an associative or non-associative system of operations. By the nature of the change in the time of solving the problem, depending on the number of necessary operations, we can conclude that a purely sequential method of solving problems or connecting additional brain resources to the solution in parallel mode. In a previously published experimental work, a person in the process of solving an associative problem recognized color images with meaningful images. In the new study, a similar problem is solved for abstract monochrome geometric shapes. Analysis of the result showed that for the second case, the probability of the subject switching to a parallel method of processing visual information is significantly reduced. The research method is based on presenting a person with two types of tasks. One type of problem contains associative calculations and allows a parallel solution algorithm. Another type of problem is the control one, which contains problems in which calculations are not associative and parallel algorithms are ineffective. The task of recognizing and searching for a given object is associative. A parallel strategy significantly speeds up the solution with relatively small additional resources. As a control series of problems (to separate parallel work from the acceleration of a sequential algorithm), we use, as in the previous experiment, a non-associative comparison problem in cyclic arithmetic, presented in the visual form of the game “rock, paper, scissors”. In this problem, the parallel algorithm requires a large number of processors with a small efficiency coefficient. Therefore, the transition of a person to a parallel algorithm for solving this problem is almost impossible, and the acceleration of processing input information is possible only by increasing the speed. Comparing the dependence of the solution time on the volume of source data for two types of problems allows us to identify four types of strategies for adapting to the increasing complexity of the problem: uniform sequential, accelerated sequential, parallel computing (where possible), or undefined (for this method) strategy. The Reducing of the number of subjects, who switch to a parallel strategy when encoding input information with formal images, shows the effectiveness of codes that cause subject associations. They increase the speed of human perception and processing of information. The article contains a preliminary mathematical model that explains this phenomenon. It is based on the appearance of a second set of initial data, which occurs in a person as a result of recognizing the depicted objects.

  4. Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

    Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

  5. Петров И.Б., Конов Д.С., Васюков А.В., Муратов М.В.
    Определение крупных трещин в геологической среде с использованием сверточных нейронных сетей
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 889-901

    В данной работе рассматривается обратная задача сейсморазведки — определение структуры исследуемой среды по зарегистрированному волновому отклику от нее. В качестве целевого объекта рассматриваются крупные трещины, размеры и положение которых необходимо определить.

    Для решения прямой задачи используется численное моделирование сеточно-характеристическим методом. Сеточно-характеристический метод позволяет применять физически обоснованные алгоритмы расчета точек на внешних границах области и контактных границах внутри области интегрирования. Трещина принимается тонкой, для описания трещины используется специальное условие на створках трещины.

    Обратная задача решается с помощью сверточных нейронных сетей. Входными данными нейронной сети являются сейсмограммы, интерпретируемые как изображения. Выходными данными являются маски, описывающие среду на структурированной сетке. Каждый элемент такой сетки относится к одному из двух классов: либо элемент сплош- ного геологического массива, либо элемент, через который проходит трещина. Такой подход позволяет рассматривать среду, в которой находится неизвестное наперед количество трещин.

    Для обучения нейронной сети использовались исключительно примеры с одной трещиной. Для итогового тестирования обученной сети использовались отдельные примеры с несколькими трещинами, эти примеры никак не были задействованы в ходе обучения. Целью тестирования в таких условиях была проверка, что обученная сеть обладает достаточной общностью, распознает в сигнале признаки наличия трещины и при этомне страдает от переобучения на примерах с единственной трещиной в среде.

    В работе показано, что сверточная сеть, обученная на примерах с единичной трещиной, может использоваться для обработки данных с множественными трещинами. Хорошо определяются в том числе небольшие трещины на больших глубинах, если они пространственно разнесены друг от друга на расстояние большее, чемдлина сканирующего импульса. В этом случае на сейсмограмме их волновые отклики хорошо различимы и могут быть интерпретированы нейронной сетью. В случае близко расположенных трещин могут возникать артефакты и ошибки интерпретации. Это связано с тем, что на сейсмограмме волновые отклики близких трещин сливаются, из-за чего нейронная сеть интерпретирует несколько рядом расположенных трещин как одну. Отметим, что подобную ошибку, скорее всего, допустил бы и человек при ручной интерпретации данных. В работе приведены примеры некоторых таких артефактов, искажений и ошибок распознавания.

    Petrov I.B., Konov D.S., Vasyukov A.V., Muratov M.V.
    Detecting large fractures in geological media using convolutional neural networks
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901

    This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.

    he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.

    The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.

    The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.

    The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.

  6. Темлякова Е.А., Джелядин Т.Р., Камзолова С.Г., Сорокин А.А.
    Система хранения профилей физических свойств ДНК на примере промоторов Escherichia coli
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 443-450

    В данной работе нами представлена база данных, спроектированная для хранения профилей физических свойств вдоль двойной спирали ДНК, и продемонстрировано ее использование для хранения, поиска и анализа промоторных последовательностей E. coli. Отличительным свойством предложенной базы данных является то, что весь профиль хранится как единый объект, который с точки зрения СУБД полностью подобен строке или числу. Такие объекты СУБД может сравнивать друг с другом и осуществлять быструю выборку на основании индексов. В базу данных загружена информация о 1227 известных промоторах. Для каждого промотора сохранена нуклеотидная последовательность, а также вычислен и загружен в базу профиль электростатического потенциала промоторной ДНК. Кроме того, каждый промотор связан с генами, транскипцию которых он регулирует, а также с записями о сайтах посадки транскрипционных факторов, влияющих на функционирование промотора. Организован доступ к базе данных через интернет; исходные коды доступны для скачивания, а содержимое базы данных может быть выслано авторами по запросу.

    Temlyakova E.A., Dzhelyadin T.R., Kamzolova S.G., Sorokin A.A.
    System to store DNA physical properties profiles with application to the promoters of Escherichia coli

    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 443-450

    Database to store, search and retrieve DNA physical properties profiles has been developed and its use for analysis of E. coli promoters has been demonstrated. Unique feature of the database is in its ability to handle whole profile as single internal object type in a way similar to integers or character strings. To demonstrate utility of such database it was populated with data of 1227 known promoters, their nucleotide sequence, profile of electrostatic potential, transcription factor binding sites. Each promoter is also connected to all genes, whose transcription is controlled by that promoter. Content of the database is available for search via web interface. Source code of profile datatype and library to work with it from R/Bioconductor are available from the internet, dump of the database is available from authors by request.

    Просмотров за год: 3.
  7. Фатьянов А.Г., Бурмин В.Ю.
    Сейсмические волновые поля в сферически-симметричной Земле с высокой детальностью. Аналитическое решение
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 903-922

    Получено аналитическое решение для сейсмических волновых полей в сферически-симметричной Земле. В случае произвольной слоистой среды решение, в которое входят функции Бесселя, строится с помощью дифференциальной прогонки. Для устойчивого вычисления волновых полей используется асимптотика функций Бесселя. Показано, что классическая асимптотика в случае высоких частот дает погрешность в решении. Для эффективного вычисления решения без погрешностей с высокой детальностью используется оригинальная асимптотика. Создана программа, позволяющая проводить расчеты для высокочастотных (1 герц и выше) телесейсмических волновых полей в дискретном (слоистом) шаре планетарных размеров. Расчеты можно осуществлять даже на персональных компьютерах с распараллеливанием OpenMP.

    В работе Бурмина (2019 г.) предложена сферически-симметричная модель Земли. Она характеризуется тем, что в ней внешнее ядро обладает вязкостью и, следовательно, эффективным модулем сдвига, отличным от нуля. Для этой модели Земли проведен расчет с высокой детальностью с несущей частотой в 1 герц. В результате аналитического расчета обнаружено, что впереди PKP-волн возникают высокочастотные колебания небольшой амплитуды, так называемые предвестники. Аналитический расчет показал, что теоретические сейсмограммы для этой модели Земли во многом похожи на экспериментальные данные. При этом ключевым моментом сравнения является возникновение предвестников впереди PKP-волн. Это подтверждает правильность идей, положенных в основу ее построения.

    Fatyanov A.G., Burmin V.Y.
    Seismic wave fields in spherically symmetric Earth with high details. Analytical solution
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 903-922

    An analytical solution is obtained for seismic wave fields in a spherically symmetric Earth. In the case of an arbitrary layered medium, the solution, which includes Bessel functions, is constructed by means of a differential sweep method. Asymptotic of Bessel functions is used for stable calculation of wave fields. It is shown that the classical asymptotic in the case of a sphere of large (in wavelengths) dimensions gives an error in the solution. The new asymptotic is used for efficient calculation of a solution without errors with high detail. A program has been created that makes it possible to carry out calculations for high-frequency (1 hertz and higher) teleseismic wave fields in a discrete (layered) sphere of planetary dimensions. Calculations can be carried even out on personal computers with OpenMP parallelization.

    In the works of Burmin (2019) proposed a spherically symmetric model of the Earth. It is characterized by the fact that in it the outer core has a viscosity and, therefore, an effective shear modulus other than zero. For this model of the Earth, a highly detailed calculation was carried out with a carrier frequency of 1 hertz. As a result of the analytical calculation, it was found that highfrequency oscillations of small amplitude, the so-called “precursors”, appear ahead of the PKP waves. An analytical calculation showed that the theoretical seismograms for this model of the Earth are in many respects similar to the experimental data. This confirms the correctness of the ideas underlying its construction.

  8. Леонов А.В., Колтовская Е.В., Чичерина О.В.
    Биогидрохимический портрет Белого моря
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 125-160

    Биогидрохимический портрет Белого моря построен с помощью расчетов на CNPSi-модели по систематизированным среднемноголетним наблюдениям (среднемесячные гидрометеорологические, гидрохимические и гидробиологические параметры морской среды). Также в расчетах использована уточненная информация о выносе в морские акватории биогенных веществ со стоком основных рекритоков (Нива, Онега, Северная Двина, Мезень, Кемь, Кереть). Параметры морской среды — значения температуры, освещенности, прозрачности, биогенной нагрузки. Для девяти районов моря (заливы Кандалакшский, Онежский, Двинский, Мезенский, Соловецкие о-ва, Бассейн, Горло, Воронка, губа Чупа) характеристики портрета моря включают: изменение в течение года концентраций органических и минеральных соединений биогенных элементов (С, N, P, Si), биомассы организмов низших трофических звеньев (гетеротрофные бактерии, диатомовый фитопланктон, растительноядный и хищный зоопланктон) и другие показатели (скорости изменения концентраций веществ и биомасс организмов, внутренние и внешние потоки веществ, балансы отдельных веществ и биогенных элементов в целом). Расчетные по среднемноголетним данным показатели состояния морской среды (температура воды, соотношения минеральных фракций N < P) и доминирующего диатомового фитопланктона в море (обилие, продукция, биомасса, содержание хлорофилла а) сравнивали с результатами отдельных съемок (за 1972–1991 и 2007–2012 гг.) по районам моря. При очевидных отличиях способов оценки значений показателей (по наблюдениям — аналитические методы, а при расчетах на модели — вычисления по соответствующим уравнениям) отмечена близость расчетных показателей состояния фитопланктона приведенным в литературе данным по фитопланктону Белого моря. Так, литературные оценки годовой продукции диатомовых водорослей в Белом море находятся в пределах 1.5–3 млн т С (при продолжительности вегетации 180 сут), а по расчетам она составляет ~2 и 3.5 млн т С при принимаемых периодах вегетации в 150 и 180 сут соответственно.

    Leonov A.V., Kоltovskaya Е.V., Chicherina О.V.
    Biohydrochemical portrait of the White Sea
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 125-160

    The biohydrochemical portrait of the White Sea is constructed on the CNPSi-model calculations based on long-term mean annual observations (average monthly hydrometeorological, hydrochemical and hydrobiological parameters of the marine environment) as well as on updated information on the nutrient input to the sea with the runoff of the main river tributaries (Niva, Onega, Northern Dvina, Mezen, Kem, Keret). Parameters of the marine environment are temperature, light, transparency, and biogenic load. Ecological characteristics of the sea “portrait” were calculated for nine marine areas (Kandalaksha, Onega, Dvinsky, Mezensky Bays, Solovetsky Islands, Basin, Gorlot, Voronka, Chupa Bay), these are: the concentration changes of organic and mineral compounds of biogenic elements (C, N, P, Si), the biomass of organisms of the lower trophic level (heterotrophic bacteria, diatomic phytoplankton, herbivorous and predatory zooplankton) and other ones (rates of substance concentration and organism biomass changes, internal and external substance flows, balances of individual substances and nutrients as a whole). Parameters of the marine environment state (water temperature, ratio of mineral fractions N < P) and dominant diatom phytoplankton in the sea (abundance, production, biomass, chlorophyll content a) were calculated and compared with the results of individual surveys (for 1972–1991 and 2007–2012) of the White Sea water areas. The methods for estimating the values of these parameters from observations and calculations differ, however, the calculated values of the phytoplankton state are comparable with the measurements and are similar to the data given in the literature. Therefore, according to the literature data, the annual production of diatoms in the White Sea is estimated at 1.5–3 million tons C (at a vegetation period of 180 days), and according to calculations it is ~2 and 3.5 million tons C for vegetation period of 150 and 180 days respectively.

    Просмотров за год: 15. Цитирований: 1 (РИНЦ).
  9. Аристов В.В., Строганов А.В., Ястребов А.Д.
    Применение модели кинетического типа для изучения пространственного распространения COVID-19
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627

    Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.

    Aristov V.V., Stroganov A.V., Yastrebov A.D.
    Application of the kinetic type model for study of a spatial spread of COVID-19
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627

    A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.

  10. Яковлев А.А., Абакумов А.И., Костюшко А.В., Маркелова Е.В.
    Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426

    При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.

    Yakovlev A.A., Abakumov A.I., Kostyushkо A.V., Markelova E.V.
    Cytokines as indicators of the state of the organism in infectious diseases. Experimental data analysis
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1409-1426

    When person`s diseases is result of bacterial infection, various characteristics of the organism are used for observation the course of the disease. Currently, one of these indicators is dynamics of cytokine concentrations are produced, mainly by cells of the immune system. There are many types of these low molecular weight proteins in human body and many species of animals. The study of cytokines is important for the interpretation of functional disorders of the body's immune system, assessment of the severity, monitoring the effectiveness of therapy, predicting of the course and outcome of treatment. Cytokine response of the body indicating characteristics of course of disease. For research regularities of such indication, experiments were conducted on laboratory mice. Experimental data are analyzed on the development of pneumonia and treatment with several drugs for bacterial infection of mice. As drugs used immunomodulatory drugs “Roncoleukin”, “Leikinferon” and “Tinrostim”. The data are presented by two types cytokines` concentration in lung tissue and animal blood. Multy-sided statistical ana non statistical analysis of the data allowed us to find common patterns of changes in the “cytokine profile” of the body and to link them with the properties of therapeutic preparations. The studies cytokine “Interleukin-10” (IL-10) and “Interferon Gamma” (IFN$\gamma$) in infected mice deviate from the normal level of infact animals indicating the development of the disease. Changes in cytokine concentrations in groups of treated mice are compared with those in a group of healthy (not infected) mice and a group of infected untreated mice. The comparison is made for groups of individuals, since the concentrations of cytokines are individual and differ significantly in different individuals. Under these conditions, only groups of individuals can indicate the regularities of the processes of the course of the disease. These groups of mice were being observed for two weeks. The dynamics of cytokine concentrations indicates characteristics of the disease course and efficiency of used therapeutic drugs. The effect of a medicinal product on organisms is monitored by the location of these groups of individuals in the space of cytokine concentrations. The Hausdorff distance between the sets of vectors of cytokine concentrations of individuals is used in this space. This is based on the Euclidean distance between the elements of these sets. It was found that the drug “Roncoleukin” and “Leukinferon” have a generally similar and different from the drug “Tinrostim” effect on the course of the disease.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.