Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Особенности социальных взаимодействий: базовая модель
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1673-1693В работе рассматриваются базовая модель конкурентных взаимодействий и ее использование для анализа и описания социальных процессов. Особенностью модели является то, что она описывает взаимодействие нескольких конкурирующих акторов, при этом акторы могут варьировать стратегию своих действий, в частности, образовывать коалиции для совместного противодействия общему противнику.
В результате моделирования выявлены различные режимы конкурентного взаимодействия, проведена их классификация, описаны их особенности. В ходе исследования уделено внимание так называемым негрубым (по А.А. Андронову) случаям реализации конкурентного взаимодействия, которые до сих пор редко рассматривались в научной литературе, но зато достаточно часто встречаются в реальной жизни. Сиспо льзованием базовой математической модели рассмотрены условия реализации различных режимов конкурентных взаимодействий, определены условия перехода от одних режимов к другим, приведены примеры реализации этих режимов в экономике, социальной и политической жизни.
Показано, что при относительно невысоком уровне конкуренции, носящей неантагонистический характер, конкуренция может приводить к повышению активности взаимодействующих акторов и к общему экономическому росту. Причем при наличии расширяющихся ресурсных возможностей (до тех пор, пока такие возможности сохраняются) данный рост может иметь гиперболический характер. При снижении ресурсных возможностей и усилении конкуренции происходит переход к колебательному режиму, когда более слабые акторы объединяются для совместного противодействия более сильным. При дальнейшем снижении ресурсных возможностей и усилении конкуренции происходит переход к формированию устойчивых иерархических структур. При этом модель показывает, что в определенный момент происходит потеря устойчивости, система становится негрубой (по А.А. Андронову) и чувствительной к флуктуациям изменений параметров. В результате сложившиеся иерархии могут разрушиться и замениться на новые. При дальнейшем повышении интенсивности конкуренции происходит полное подавление актором-лидером своих оппонентов и установление монополизма.
Приведены примеры из экономической, социальной, политической жизни, иллюстрирующие закономерности, выявленные на основе моделирования с использованием базовой модели конкуренции. Полученные результаты могут быть использованы при анализе, моделировании и прогнозировании социально-экономических и политических процессов.
Ключевые слова: конкуренция, математическое моделирование, игра с нулевой и положительной суммой, монополизм, иерархии, динамическое равновесие, устойчивые структуры.
Features of social interactions: the basic model
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1673-1693The paper considers the basic model of competitive interactions and its use for the analysis and description of social processes. The peculiarity of the model is that it describes the interaction of several competing actors, while actors can vary the strategy of their actions, in particular, form coalitions to jointly counter a common enemy. As a result of modeling, various modes of competitive interaction were identified, their classification was conducted, and their features were described. In the course of the study, the attention is paid to the so-called “rough” (according to A.A. Andronov) cases of the implementation of competitive interaction, which until now have rarely been considered in the scientific literature, but are quite common in real life. Using a basic mathematical model, the conditions for the implementation of various modes of competitive interactions are considered, the conditions for the transition from one mode to another are determined, examples of the implementation of these modes in the economy, social and political life are given. It is shown that with a relatively low level of competition, which is non-antagonistic in nature, competition can lead to an increase in the activity of interacting actors and to overall economic growth. Moreover, in the presence of expanding resource opportunities (as long as such opportunities remain), this growth may have a hyperbolic character. With a decrease in resource capabilities and increased competition, there is a transition to an oscillatory mode, when weaker actors unite to jointly counteract stronger ones. With a further decrease in resource opportunities and increased competition, there is a transition to the formation of stable hierarchical structures. At the same time, the model shows that at a certain moment there is a loss of stability, the system becomes “rough” according to A.A. Andronov and sensitive to fluctuations in parameter changes. As a result, the existing hierarchies may collapse and be replaced by new ones. With a further increase in the intensity of competition, the actor-leader completely suppresses his opponents and establishes monopolism. Examples from economic, social, and political life are given, illustrating the patterns identified on the basis of modeling using the basic model of competition. The obtained results can be used in the analysis, modeling and forecasting of socioeconomic and political processes.
-
Динамика планктонного сообщества с учетом трофических характеристик зоопланктона
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 525-554Предложена четырехкомпонентная модель планктонного сообщества с дискретным временем, учитывающая конкурентные взаимоотношения между разными группами фитопланктона и трофические характеристики зоопланктона: рассматривается деление зоопланктона на хищный и нехищный типы. Изъятие нехищного зоопланктона хищным явно представлено в модели. Нехищный зоопланктон питается фитопланктоном, включающим два конкурирующих компонента: токсичный и нетоксичный тип, при этом последний пригоден в пищу для зоопланктона. Модель двух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух типов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из компонентов-конкурентов доступностью внешних ресурсов. Изъятие жертв хищниками описывается трофической функцией Холлинга типа II с учетом насыщения хищника.
Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего существованию полного сообщества, может происходить как через каскад бифуркаций удвоения периода, так и бифуркацию Неймарка – Сакера, ведущую к возникновению квазипериодических колебаний. Предложенная в данной работе модель, являясь достаточно простой, демонстрирует динамику сообщества подобную той, что наблюдается в естественных системах и экспериментах: с отставанием колебаний хищника от жертвы примерно на четверть периода, длиннопериодические противофазные циклы хищника и жертвы, а также скрытые циклы, при которых плотность жертв остается практически постоянной, а плотность хищников флуктуирует, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие. При этом вариация внутрипопуляционных параметров фито- или зоопланктона может приводить к выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. Квазипериодическая динамика может возникать при достаточно небольшихск оростях роста фитопланктона, соответствующих стабильной или регулярной динамике сообщества. Смена динамического режима в этой области (переход от регулярной динамики к квазипериодической и наоборот) может происходить за счет вариации начальных условий или внешнего воздействия, изменяющего текущие численности компонентов и смещающего систему в бассейн притяжения другого динамического режима.
Ключевые слова: динамика сообщества, бифуркация, динамические режимы, мультистабильность, модель Рикера, конкуренция, взаимодействие «хищник – жертва», скрытые циклы.
Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.
The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.
-
Прогнозирование розничной торговли на высокочастотных обезличенных данных
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1713-1734Развитие технологий определяет появление данных с высокой детализацией во времени и пространстве, что расширяет возможности анализа, позволяя рассматривать потребительские решения и конкурентное поведение предприятий во всем их многообразии, с учетом контекста территории и особенностей временных периодов. Несмотря на перспективность таких исследований, в настоящее время в научной литературе они представлены ограниченно, что определяется их особенностями. С целью их раскрытия в статье обращается внимание на ключевые проблемы, возникающие при работе с обезличенными высокочастотными данными, аккумулируемыми фискальными операторами, и направления их решения, проводится спектр тестов, направленный на выявление возможности моделирования изменений потребления во времени и пространстве. Особенности нового вида данных рассмотрены на примере реальных обезличенных данных, полученных от оператора фискальных данных «Первый ОФД» (АО «Энергетические системы и коммуникации»). Показано, что одновременно со спектром свойственных высокочастотным данным проблем существуют недостатки, связанные с процессом формирования данных на стороне продавцов, требующие более широкого применения инструментов интеллектуального анализа данных. На рассматриваемых данных проведена серия статистических тестов, включая тест на наличие ложной регрессии, ненаблюдаемых эффектов в остатках модели, последовательной корреляции и кросс-секционной зависимости остатков панельной модели, авторегрессии первого порядка в случайных эффектах, сериальной корреляции на первых разностях панельных данных и др. Наличие пространственной автокорреляции данных тестировалось с помощью модифицированных тестов множителей Лагранжа. Проведенные тесты показали наличие последовательной корреляции и пространственной зависимости данных, обуславливающих целесообразность применения методов панельного и пространственного анализа применительно к высокочастотным данным, аккумулируемым фискальными операторами. Построенные модели позволили обосновать пространственную связь роста продаж и ее зависимость от дня недели. Ограничением для повышения предсказательной возможности построенных моделей и последующего их усложнения, за счет включения объясняющих факторов, стало отсутствие в открытом доступе статистики, сгруппированной в необходимой детализации во времени и пространстве, что определяет актуальность формирования баз высокочастотных географически структурированных данных.
Ключевые слова: фискальные данные, обезличенные высокочастотные данные, оператор фискальных данных, пространственная регрессия на панельных данных.
Retail forecasting on high-frequency depersonalized data
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1713-1734Technological development determines the emergence of highly detailed data in time and space, which expands the possibilities of analysis, allowing us to consider consumer decisions and the competitive behavior of enterprises in all their diversity, taking into account the context of the territory and the characteristics of time periods. Despite the promise of such studies, they are currently limited in the scientific literature. This is due to the range of problems, the solution of which is considered in this paper. The article draws attention to the complexity of the analysis of depersonalized high-frequency data and the possibility of modeling consumption changes in time and space based on them. The features of the new type of data are considered on the example of real depersonalized data received from the fiscal data operator “First OFD” (JSC “Energy Systems and Communications”). It is shown that along with the spectrum of problems inherent in high-frequency data, there are disadvantages associated with the process of generating data on the side of the sellers, which requires a wider use of data mining tools. A series of statistical tests were carried out on the data under consideration, including a Unit-Root Test, test for unobserved individual effects, test for serial correlation and for cross-sectional dependence in panels, etc. The presence of spatial autocorrelation of the data was tested using modified tests of Lagrange multipliers. The tests carried out showed the presence of a consistent correlation and spatial dependence of the data, which determine the expediency of applying the methods of panel and spatial analysis in relation to high-frequency data accumulated by fiscal operators. The constructed models made it possible to substantiate the spatial relationship of sales growth and its dependence on the day of the week. The limitation for increasing the predictive ability of the constructed models and their subsequent complication, due to the inclusion of explanatory factors, was the lack of open access statistics grouped in the required detail in time and space, which determines the relevance of the formation of high-frequency geographically structured data bases.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"