Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'assessment':
Найдено статей: 102
  1. Гребенкин И.В., Алексеенко А.Е., Гайворонский Н.А., Игнатов М.Г., Казённов А.М., Козаков Д.В., Кулагин А.П., Холодов Я.А.
    Применение ансамбля нейросетей и методов статистической механики для предсказания связывания пептида с главным комплексом гистосовместимости
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1383-1395

    Белки главного комплекса гистосовместимости (ГКГС) играют ключевую роль в работе адаптивной иммунной системы, и определение связывающихся с ними пептидов — важный шаг в разработке вакцин и понимании механизмов аутоиммунных заболеваний. На сегодняшний день существует ряд методов для предсказания связывания определенной аллели ГКГС с пептидом. Одним из лучших таких методов является NetMHCpan-4.0, основанный на ансамбле искусственных нейронных сетей. В данной работе представлена методология качественного улучшения архитектуры нейронной сети, лежащей в основе NetMHCpan-4.0. Предлагаемый метод использует технику построения ансамбля и добавляет в качестве входных данных оценку модели Поттса, взятой из статистической механики и являющейся обобщением модели Изинга. В общем случае модельо тражает взаимодействие спинов в кристаллической решетке. Применительно к задаче белок-пептидного взаимодействия вместо спинов используются типы аминокислот, находящихся в кармане связывания. В предлагаемом методе модель Поттса используется для более всестороннего представления физической природы взаимодействия полипептидных цепей, входящих в состав комплекса. Для оценки взаимодействия комплекса «ГКГС + пептид» нами используется двумерная модель Поттса с 20 состояниями (соответствующими основным аминокислотам). Решая обратную задачу с использованием данных об экспериментально подтвержденных взаимодействующих парах, мы получаем значения параметров модели Поттса, которые затем применяем для оценки новой пары «ГКГС + пептид», и дополняем этим значением входные данные нейронной сети. Такой подход, в сочетании с техникой построения ансамбля, позволяет улучшитьт очность предсказания, по метрике положительной прогностической значимости (PPV), по сравнению с базовой моделью.

    Grebenkin I.V., Alekseenko A.E., Gaivoronskiy N.A., Ignatov M.G., Kazennov A.M., Kozakov D.V., Kulagin A.P., Kholodov Y.A.
    Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395

    The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.

  2. В данной статье решается задача разработки технологии сбора исходных данных для построения моделей оценки функционального состояния человека. Данное состояние оценивается по зрачковой реакции человека на изменение освещенности на основе метода пупиллометрии. Данный метод предполагает сбор и анализ исходных данных (пупиллограмм), представленных в виде временных рядов, характеризующих динамику изменения зрачков человека на световое импульсное воздействие. Анализируются недостатки традиционного подхода к сбору исходных данных с применением методов компьютерного зрения и сглаживания временных рядов. Акцентируется внимание на важности качества исходных данных для построения адекватных математических моделей. Актуализируется необходимость ручной разметки окружностей радужной оболочки глаза и зрачка для повышения точности и качества исходных данных. Описываются этапы предложенной технологии сбора исходных данных. Приводится пример полученной пупиллограммы, имеющей гладкую форму и не содержащей выбросы, шумы, аномалии и пропущенные значения. На основе представленной технологии разработан программно-аппаратный комплекс, представляющий собой совокупность специального программного обеспечения, имеющего два основных модуля, и аппаратной части, реализованной на базе микрокомпьютера Raspberry Pi 4 Model B, с периферийным оборудованием, реализующим заданный функционал. Для оценки эффективности разработанной технологии используются модели однослойного персептрона и коллектива нейронных сетей, для построения которых использовались исходные данные о функциональном состоянии утомления человека. Проведенные исследования показали, что применение ручной разметки исходных данных (по сравнению с автоматическими методами компьютерного зрения) приводит к снижению числа ошибок 1-го и 2-года рода и, соответственно, повышению точности оценки функционального состояния человека. Таким образом, представленная технология сбора исходных данных может эффективно использоваться для построения адекватных моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности. Использование таких моделей актуально в решении отдельных задач обеспечения транспортной безопасности, в частности мониторинга функционального состояния водителей.

    This article solves the problem of developing a technology for collecting initial data for building models for assessing the functional state of a person. This condition is assessed by the pupil response of a person to a change in illumination based on the pupillometry method. This method involves the collection and analysis of initial data (pupillograms), presented in the form of time series characterizing the dynamics of changes in the human pupils to a light impulse effect. The drawbacks of the traditional approach to the collection of initial data using the methods of computer vision and smoothing of time series are analyzed. Attention is focused on the importance of the quality of the initial data for the construction of adequate mathematical models. The need for manual marking of the iris and pupil circles is updated to improve the accuracy and quality of the initial data. The stages of the proposed technology for collecting initial data are described. An example of the obtained pupillogram is given, which has a smooth shape and does not contain outliers, noise, anomalies and missing values. Based on the presented technology, a software and hardware complex has been developed, which is a collection of special software with two main modules, and hardware implemented on the basis of a Raspberry Pi 4 Model B microcomputer, with peripheral equipment that implements the specified functionality. To evaluate the effectiveness of the developed technology, models of a single-layer perspetron and a collective of neural networks are used, for the construction of which the initial data on the functional state of intoxication of a person were used. The studies have shown that the use of manual marking of the initial data (in comparison with automatic methods of computer vision) leads to a decrease in the number of errors of the 1st and 2nd years of the kind and, accordingly, to an increase in the accuracy of assessing the functional state of a person. Thus, the presented technology for collecting initial data can be effectively used to build adequate models for assessing the functional state of a person by pupillary response to changes in illumination. The use of such models is relevant in solving individual problems of ensuring transport security, in particular, monitoring the functional state of drivers.

  3. Басаева Е.К., Каменецкий Е.С., Хосаева З.Х.
    Оценка взаимодействия элиты и народа в постсоветских странах с использованием байесовского подхода
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1233-1247

    Рассматривалась ранее разработанная модель, описывающая динамику социальной напряженности общества, разделенного на две группы: элиту и народ. Эта модель учитывала влияние изменения экономической ситуации и взаимовлияние народа и элиты. Модель модифицирована путем включения в уравнение, описывающее напряженность народа, слагаемого, учитывающего адаптацию народа к создавшейся ситуации.

    Оценка коэффициентов модели является важной задачей, решение которой позволяет получить информацию о характере взаимодействии элиты и народа. Предполагалось, что при оптимальных значениях коэффициентов решение системы уравнений модели наиболее близко к значениям индикатора, характеризующего социальную напряженность. В качестве индикатора социальной напряженности в данной работе использовался нормированный уровень убийств.

    Исследуемая модель содержит семь коэффициентов. Два коэффициента, характеризующие степень влияния изменения экономической ситуации на элиту и народ, приняты равными между собой и одинаковыми для всех стран. Их оценки получены по упрощенной модели, учитывающей только изменение экономической ситуации и допускающей аналитическое решение.

    С помощью байесовского подхода проведена оценка остальных пяти коэффициентов модели для постсоветских стран. Для всех рассматриваемых стран априорные плотности вероятностей четырех коэффициентов принимались одинаковыми. Априорная плотность вероятности пятого коэффициента считалась зависящей от режима правления (авторитарный или переходный). Принималось, что расчетное значение социальной напряженности совпадает с соответствующим значением индикатора напряженности в тех случаях, когда разность между ними не превышала 5%.

    Проведенные расчеты показали, что для постсоветских стран получено хорошее совпадение расчетных значений напряженности народа и нормированного уровня убийств. Отметим, что совпадение удовлетворительно только в среднем, что естественно для достаточно грубой модели.

    В работе получены следующие основные результаты: под влиянием некоторых значительных событий в 40% постсоветских стран наблюдалось быстрое изменение характера взаимодействия элиты и народа; региональные особенности оказывают некоторое влияние на взаимодействие элиты и народа; тип правления не оказывает существенного влияния на взаимодействие элиты и народа; предложен способ оценки стабильности страны по величине коэффициентов модели.

    Basaeva E.K., Kamenetsky E.S., Khosaeva Z.K.
    Assessment of the elite–people interaction in post-soviet countries using the Bayesian approach
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1233-1247

    A previously developed model that describes the dynamics of social tension in a society divided into two groups: the elite and the people was considered. This model took into account the impact of economic situation changes and the elite–people interaction. The model has been modified by including in the equation describing the tension of the people, a term that takes into account the adaptation of the people to the current situation.

    The model coefficients estimation is an important task, the solution of which allows obtaining information about the nature of the interaction between elite and people. We believe that the solution of the system of model equations with optimal coefficients is closest to the values of the indicator characterizing social tension. We used the normalized level of homicide rate as an indicator of social tension.

    The model contains seven coefficients. Two coefficients characterizing the influence of economic situation changes on elite and people are taken equal to each other and the same for all countries. We obtained their estimations using a simplified model that takes into account only the change in the economic situation and allows an analytical solution.

    The Bayesian approach was used to estimate the remaining five coefficients of model for post-Soviet countries. The prior probability densities of the four coefficients for all countries under consideration were taken to be the same. The prior probability density of fifth coefficient was considered to depend on the regime of government (authoritarian or «transitional»). We assumed that the calculated tension matches with the corresponding indicator of tension in cases where the difference between them does not exceed 5%.

    The calculations showed that for the post-Soviet countries, a good coincidence was obtained between the calculated values of the people tension and the normalized level of homicide rate. The coincidence is satisfactory only on average.

    The following main results was obtained at the work: under the influence of some «significant» events in 40% of post-Soviet countries, there was a rapid change in the nature of interaction between the elite and the people; regional feature have some influence on the elite–people interaction; the type of government does not significantly affect the elite–people interaction; the method for assessing the stability of the country by the value of the model coefficients is proposed.

  4. Нестерова А.В., Денисова Н.В., Минин С.М., Анашбаев Ж.Ж., Усов В.Ю.
    Определение поправочных коэффициентов при количественной оценке костных патологических очагов методом гамма-эмиссионной томографии
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 677-696

    При обследовании методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ) пациентам с заболеваниями костной системы вводится радиофармпрепарат (РФП), который специфическим образом накапливается в патологических очагах. Количественные оценки накопления РФП в очагах важны для определения стадии заболевания, прогнозирования его течения и разработки персонализированных терапевтических стратегий. Исследования точности количественных оценок обычно проводятся на основе клинических испытаний in vitro с использованием стандартизированного вещественного фантома NEMA IEC с шестью сферами, имитирующими патологические очаги разных размеров. Однако возможности проведения таких многопараметрических экспериментальных измерений ограничены из-за высокойстоимости и лучевой нагрузки на исследователей. В данной работе развит альтернативный подход на основе имитационного компьютерного моделирования in silico с использованием цифрового двойника фантома NEMA IEC. Компьютерные эксперименты могут проводиться без ограничений с разными сценариями. По аналогии с клиническими испытаниями в численном моделировании оценивался коэффициент восстановления (RCmax), равный отношению максимального значения полученного решения в очаге к его точной величине. Условия моделирования были ориентированы на параметры клинических обследований методом ОФЭКТ/КТ с 99mTc пациентов с заболеваниями и поражениями костной системы. Впервые выполнены исследования зависимости RCmax от величины отношения «очаг/фон» и влияния постфильтрации решения. В численных экспериментах были получены краевые артефакты на изображениях очагов, аналогичные тем, которые наблюдались при измерениях на реальном фантоме NEMA IEC и в клинической практике при обследовании пациентов. Краевые артефакты приводят к нестабильности поведения решения в итерационном процессе и к ошибкам в оценке накопления РФП в очагах. Показано, что постфильтрация снижает влияние этих артефактов, обеспечивая стабильное решение. Однако при этом существенно занижаются оценки решения в небольших очагах, поэтому предложено учитывать полученные в данной работе поправочные коэффициенты при количественной оценке активности в очагах диаметром менее 20 мм.

    Nesterova A.V., Denisova N.V., Minin S.M., Anashbaev Z.Z., Usov V.Y.
    Determination of post-reconstruction correction factors for quantitative assessment of pathological bone lesions using gamma emission tomography
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 677-696

    In single-photon emission computed tomography (SPECT), patients with bone disorders receive a radiopharmaceutical (RP) that accumulates selectively in pathological lesions. Accurate quantification of RP uptake plays a critical role in disease staging, prognosis, and the development of personalized treatment strategies. Traditionally, the accuracy of quantitative assessment is evaluated through in vitro clinical trials using the standardized physical NEMA IEC phantom, which contains six spheres simulating lesions of various sizes. However, such experiments are limited by high costs and radiation exposure to researchers. This study proposes an alternative in silico approach based on numerical simulation using a digital twin of the NEMA IEC phantom. The computational framework allows for extensive testing under varying conditions without physical constraints. Analogous to clinical protocols, we calculated the recovery coefficient (RCmax), defined as the ratio of the maximum activity in a lesion to its known true value. The simulation settings were tailored to clinical SPECT/CT protocols involving 99mTc for patients with bone-related diseases. For the first time, we systematically analyzed the impact of lesion-to-background ratios and post-reconstruction filtering on RCmax values. Numerical experiments revealed the presence of edge artifacts in reconstructed lesion images, consistent with those observed in both real NEMA IEC phantom studies and patient scans. These artifacts introduce instability into the iterative reconstruction process and lead to errors in activity quantification. Our results demonstrate that post-filtering helps suppress edge artifacts and stabilizes the solution. However, it also significantly underestimates activity in small lesions. To address this issue, we introduce post-reconstruction correction factors derived from our simulations to improve the accuracy of quantification in lesions smaller than 20 mm in diameter.

  5. Васенин И.М., Крайнов А.Ю., Исайченков А.Б.
    Математическое моделирование сушки угольных частиц в потоке газа
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 357-367

    Представлена физико-математическая модель сушки угольных частиц в потоке газа и результаты расчета сушки частиц бурого угля в сушильной трубе. Показано, что для сушки угля может быть использован перегретый водяной пар. Предложена термодинамическая модель сушки частиц в сушильной трубе. Она позволяет провести предварительную оценку параметров процесса сушки.

    Vasenin I.M., Krainov A.Y., Isaychenkov A.B.
    Mathematical modeling of drying of coal particles in the gas stream
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 357-367

    Physical-mathematical model of drying of coal particles in the gas stream and the results of calculating the drying of the particles of brown coal in a drying tube are presented. It is shown that for the drying of coal can be used superheated water vapor. Thermodynamic model of drying of a particle in a drying tube are proposed. It allows to conduct a preliminary assessment of parameters of drying process.

    Цитирований: 2 (РИНЦ).
  6. Орлова Е.В.
    Оценка кредитного риска на основе методов многомерного анализа
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 893-901

    В статье предложена авторская методика многомерного анализа для формирования прогнозной оценки кредитного риска организаций, основанная на использовании информации кредитных историй, учитывающая объемы и сроки предоставляемых кредитов. Рассмотрен пример оценки кредитного риска на статистических данных кредитной организации.

    Orlova E.V.
    Credit risk assessment on the basis of multidimensional analysis
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 893-901

    The article is devoted to description the author's method of multidimensional analysis for generate an predictive assessment of organizations’ credit risk, based on the credit history information, which taking into account value and period of credit. An example of credit risk assessment is given.

    Просмотров за год: 7. Цитирований: 19 (РИНЦ).
  7. Припутина И.В., Фролова Г.Г., Шанин В.Н.
    Выбор оптимальных схем посадки лесных культур: компьютерный эксперимент
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 333-343

    В статье проанализированы результаты компьютерного эксперимента по оценке влияния пространственного размещения (схем посадки) деревьев на продукционный процесс и динамику почвенного плодородия в лесных плантациях. Для имитации роста плантаций нативной формы осины (Populus tremula L.) с коротким (30 лет) оборотом рубки использована система моделей EFIMOD и почвенно-климатические данные, соответствующие условиям лесной зоны Республики Марий Эл. По результатам модельных оценок, схемы посадки с расстоянием между деревьями в ряду 1–4 м и междурядьями 4–6 м характеризуются наибольшими показателями продукции биомассы, повышением почвенных запасов органического вещества и минимальными потерями азота почв за оборот рубки.

    Priputina I.V., Frolova G.G., Shanin V.N.
    Substantiation of optimum planting schemes for forest plantations: a computer experiment
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 333-343

    The article presents the results of computer simulations aimed to assess the influence of tree spatial locations (planting schemes) on the productivity and the dynamics of soil fertility in forest plantations. The growth of aspen (Populus tremula L.) in plantations with short rotation (30 years) was simulated in the EFIMOD system of models with the soil and climatic data matching forested lands in the Mari El Republic. The outcome reveals that higher biomass rates, increase in soil organic matter stocks, and the minimal loss of soil nitrogen can be obtained when the distance between trees in the row equals 1–4 m and 4–6 м in aisles.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  8. Шумов В.В.
    Модель обоснования направлений сосредоточения усилий пограничной охраны на уровне государства
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 187-196

    Важнейшим принципом военной науки и пограничной безопасности является принцип сосредоточения основных усилий на главных направлениях и задачах. На тактическом уровне имеется множество математических моделей для вычисления оптимального распределения ресурса по направлениям и объектам, тогда как на уровне государства соответствующие модели отсутствуют. Используя статистические данные о результатах охраны границы США, вычислен параметр пограничной производственной функции экспоненциального типа, отражающий организационно-технологические возможности пограничной охраны. Производственная функция определяет зависимость вероятности задержания нарушителей от плотности пограничников на километр границы. Финансовые показатели в производственной функции не учитываются, поскольку бюджет на содержание пограничников и оборудование границы коррелирует с количеством пограничных агентов. Определена целевая функция пограничной охраны — суммарный предотвращенный ущерб от задержанных нарушителей с учетом их ожидаемой опасности для государства и общества, подлежащий максимизации. Используя условие Слейтера, найдено решение задачи — вычислены оптимальные плотности пограничной охраны по регионам государства. Имея модель распределения ресурсов, на примере трех пограничных регионов США решена и обратная задача — оценены угрозы в регионах по известному распределению ресурсов. Ожидаемая опасность от отдельного нарушителя на американо-канадской границе в 2–5 раз выше, чем от нарушителя на американо-мексиканской границе. Результаты расчетов соответствуют взглядам специалистов по безопасности США — на американо-мексиканской границе в основном задерживаются нелегальные мигранты, тогда как потенциальные террористы предпочитают использовать другие каналы проникновения в США (включая американо-канадскую границу), где риски быть задержанными минимальны. Также результаты расчетов соответствуют сложившейся практике охраны границы: в 2013 г. численность пограничников вне пунктов пропуска на американо-мексиканской границе увеличилась в 2 раза по сравнению с 2001 г., тогда как на американо-канадской границе — в 4 раза. Практика охраны границы и взгляды специалистов дают основания для утверждения о верификации модели.

    Shumov V.V.
    The model of the rationale for the focus of border security efforts at the state level
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 187-196

    The most important principle of military science and border security is the principle of concentrating the main efforts on the main directions and tasks. At the tactical level, there are many mathematical models for computing the optimal resource allocation by directions and objects, whereas at the state level there are no corresponding models. Using the statistical data on the results of the protection of the US border, an exponential type border production function parameter is calculated that reflects the organizational and technological capabilities of the border guard. The production function determines the dependence of the probability of detaining offenders from the density of border guards per kilometer of the border. Financial indicators in the production function are not taken into account, as the border maintenance budget and border equipment correlate with the number of border agents. The objective function of the border guards is defined — the total prevented damage from detained violators taking into account their expected danger for the state and society, which is to be maximized. Using Slater's condition, the solution of the problem was found — optimal density of border guard was calculated for the regions of the state. Having a model of resource allocation, the example of the three border regions of the United States has also solved the reverse problem — threats in the regions have been assessed based on the known allocation of resources. The expected danger from an individual offender on the US-Canada border is 2–5 times higher than from an offender on the US-Mexican border. The results of the calculations are consistent with the views of US security experts: illegal migrants are mostly detained on the US-Mexican border, while potential terrorists prefer to use other channels of penetration into the US (including the US-Canadian border), where the risks of being detained are minimal. Also, the results of the calculations are consistent with the established practice of border protection: in 2013 the number of border guards outside the checkpoints on the US-Mexican border increased by 2 times compared with 2001, while on the American-Canadian border — 4 times. The practice of border protection and the views of specialists give grounds for approval of the verification of the model.

    Просмотров за год: 26.
  9. Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.

    Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.

    В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.

    Naumov I.V., Otmakhova Y.S., Krasnykh S.S.
    Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648

    The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.

  10. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

    Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.