Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численно-аналитическое исследование движения маятника Максвелла
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 123-136В статье рассматривается задача об устойчивости вертикального положения маятника Максвелла при его периодических движениях вверх-вниз. Рассмотрены два типа переходных движений: остановка — происходит тогда, когда тело маятника в своем самом верхнем положении на нити (при его стандартном движении вверх) на мгновение останавливается; двухзвенный маятник — происходит тогда, когда вся нить с тела маятника выбрана (самое нижнее положение тела на нити при его стандартном движении вниз), и тело вынуждено вращаться относительно нити вокруг точки ее закрепления к телу. Показано, что при любых значениях параметров маятника это положение является неустойчивым в том смысле, что в системе возникают колебания нити около вертикали конечной амплитуды при сколь угодно малых начальных отклонениях. Кроме того, установлено, что никаких ударных явлений при движении маятника Максвелла не возникает, а сама модель этого маятника при часто используемых в литературе значениях его параметров является некорректной по Адамару. В настоящей работе показано, что вертикальное положение нитей маятника при указанных колебательных движениях тела вдоль нитей при любых невырожденных значениях параметров маятника Максвелла всегда является неустойчивым в указанном выше смысле. Причем обусловлена эта неустойчивость именно переходными движениями 2-го типа. В настоящей работе далее показано, что никаких скачков скоростей или ускорений (из-за которых могут происходить удары или рывки в натяжениях нитей) при указанных движениях рассматриваемой модели маятника Максвелла не происходит. На наш взгляд, наблюдаемые в экспериментах рывки обусловлены другими причинами, например техническим несовершенством приборов, на которых производились опыты. В работе показано, что при любых значениях параметров маятника это положение является неустойчивым в том смысле, что в системе возникают колебания нити около вертикали конечной амплитуды при сколь угодно малых начальных отклонениях.
-
Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.
-
Суррогатная нейросетевая модель для восстановления поля течения в серийных расчетах стационарных турбулентных течений с разрешением пристенной области
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1195-1216При моделировании турбулентных течений в практических приложениях часто приходится проводить серии расчетов для тел близкой топологии. Например, тел, отличающихся формой обтекателя. Применение сверточных нейронных сетей позволяет сократить количество расчетов серии, восстановив часть из них по уже проведенным расчетам. В работе предлагается метод, позволяющий применить сверточную нейронную сеть независимо от способа построения вычислительной сетки. Для этого проводится переинтерполяция поля течения на равномерную сетку вместе с самим телом. Геометрия тела задается с помощью функции расстояния со знаком и маскирования. Восстановление поля течения на основании части расчетов для схожих геометрий проводится с помощью нейронной сети типа UNet с пространственным механизмом внимания. Разрешение пристенной области, являющееся критически важным условием при турбулентном моделировании, производится на основании уравнений, полученных в методе пристенной декомпозиции.
Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различным скруглением при фиксированных параметрах набегающего потока с числом Рейнольдса $Re = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. Проводится сравнение полей течения, профилей скорости и трения на стенке, полученных суррогатной моделью и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают перспективность предлагаемого подхода. В частности, было показано, что даже в случае использования модели на максимально допустимых границах ее применимости трение может быть получено с точностью до 90%. Также в работе проводится анализ построенной архитектуры нейронной сети. Полученная суррогатная модель сравнивается с альтернативными моделями, построенными на основании вариационного автоэнкодера или метода главных компонент с использованием радиальных базисных функций. На основании этого сравнения демонстрируются преимущества предложенного метода.
-
Моделирование некоторых сценариев в системе «власть – общество», включающих миграцию населения и изменение количества регионов
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1499-1512В работе исследуется дискретная модификация модели А.П. Михайлова «власть – общество», ранее предложенная автором. Эта модификация основана на стохастическом клеточном автомате, то есть имеет микродинамику, принципиально отличную от базовой непрерывной, основанной на дифференциальных уравнениях модели. При этом макродинамика дискретной модификации, как показано в предыдущих работах, совпадает с макродинамикой исходной модели. Этот важный результат, однако, вызывает вопрос, в чем смысл использования дискретной модели. Ее главной особенностью является гибкость, позволяющая добавлять в рассмотрение самые разные факторы, учет которых в непрерывной модели либо приводит к существенному росту вычислительной сложности, либо в принципе невозможен.
В данной работе рассматриваются несколько примеров подобного расширения области применимости модели, при помощи которого решается ряд прикладных задач.
Одна из модификаций модели учитывает экономические связи между регионами и муниципалитетами, что не могло быть исследовано в базовой модели. Вычислительные эксперименты подтвердили улучшение социально-экономических показателей системы при наличии таких связей.
Вторая модификация включает в себя возможность внутренней миграции в системе. С ее помощью был получен ряд результатов, связанных с социально-экономическим развитием более благополучного региона, притягивающего мигрантов.
Кроме этого, была исследована динамика системы при изменении количества регионов и муниципалитетов в системе. Показано негативное влияние этого процесса на социально-экономические показатели системы и найдено возможное управление, имеющее целью преодоление этого негативного влияния.
Результатами данного исследования, таким образом, явились как решение отдельных прикладных задач, так и демонстрация на их примере более широких возможностей дискретной модели по сравнению с базовой непрерывной.
-
Эффективная диагностика сердечно-сосудистых заболеваний с использованием композиционного глубокого обучения и техники объяснимого искусственного интеллекта
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1651-1666Сердечно-сосудистые заболевания на протяжении последних десятилетий представляют собой серьезную угрозу здоровью населения во всем мире, независимо от уровня развития страны. Ранняя диагностика и постоянный медицинский контроль могли бы значительно снизить смертность от этих заболеваний. Однако существующие системы здравоохранения зачастую не в состоянии обеспечить необходимый уровень мониторинга пациентов из-за ограниченных ресурсов.
В рамках нашего исследования мы использовали метод SHAP для объяснения работы модели глубокого обучения Bi-LSTM+CNN, разработанной для прогнозирования сердечно-сосудистых заболеваний. Путем балансировки данных и применения кросс-валидации мы достигли высокой точности (99,05%), полноты (99%) и F1-меры (99%) модели. Интерпретируемость модели, обеспечиваемая методом SHAP, повышает доверие медицинских специалистов к полученным результатам и способствует более широкому внедрению искусственного интеллекта в клиническую практику.
Ключевые слова: объяснимый ИИ, обратное исключение, REFCV, сердечно-сосудистые заболевания, здравоохранение, глубокое обучение. -
Формализованная модель принятия решений: учет ценностной мотивации
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 323-338В работе рассмотрены проблемы математического описания деонтологических аспектов, влияющих на поведение ЛПР (лиц, принимающих решения). Предложена методология соотнесения утилитарных (материальных) и деонтологических (ценностных) аспектов при принятии ими решений с учетом их психологических особенностей. Предложена математическая модель совместного учета утилитарных и деонтологических факторов при принятии ЛПР решений в различных ситуациях. Выявлены некоторые закономерности, связанные с этим учетом, приведено их формальное описание. Модель показывает, что существует тенденция постепенного снижения уровня деонтологичности в оценке альтернатив при принятии решений (по сравнению с тем, к чему склоняет внешний мир) к большей утилитарности. Эта тенденция с течением времени начинает влиять на общественное мнение и на отношение общества к моральным нормам, постепенно снижая общий уровень моральности в обществе. Остановить этот процесс можно только путем постоянного и целенаправленного поддержания обществом и государством высокого уровня деонтологичности (идеологическая работа, пропаганда традиционных ценностей, воспитательная работа в школе и т. п.), в противном случае общество с неизбежностью со временем станет утилитарным, ориентирующимся при принятии решений исключительно на материальные факторы.
В дальнейшем планируется использовать разработанный инструментарий для анализа конкретных ситуаций, в том числе для анализа закономерностей цивилизационных циклов: взлета и падения Римской империи, СССР, современной западной цивилизации.
Ключевые слова: принятие решений, деонтологические факторы, моральный выбор, математическая модель, сравнение альтернатив. -
Мультистабильность для математической модели тритрофической системы на неоднородном ареале
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 923-939Рассматривается пространственно-временная модель тритрофической системы, описывающая взаимодействие жертвы, хищника и суперхищника в среде с неоднородным распределением ресурса. Учитываются всеядность суперхищника (Intraguild Predation, IGP), диффузия и направленная миграция (таксис), который моделируется с помощью логарифмической функции от ресурса и плотности жертвы. Основное внимание уделено анализу мультистабильности системы и роли косимметрии в формировании континуальных семейств стационарных решений. С использованием численно-аналитического подхода изучаются пространственно-однородные и неоднородные стационарные решения. Установлено, что при выполнении дополнительных соотношений между параметрами, характеризующими локальное взаимодействие хищников, и коэффициентами диффузии система обладает косимметрией, что приводит к возникновению семейства устойчивых стационарных решений, пропорциональных функции ресурса. Показано, что косимметрия не зависит от функции ресурса в случае неоднородной среды. Проведено исследование устойчивости стационарных распределений с помощью спектрального метода. Нарушение условий косимметрии приводит к разрушению семейства и появлению изолированных стационарных состояний, а также к длительным переходным процессам, отражающим память системы об исчезнувшем семействе. В зависимости от начальных условий и параметров в системе реализуются переходы к режимам с одним хищником (выживание хищника или суперхищника) или к сосуществованию хищников. Численные эксперименты на основе метода прямых (разностная схема по пространственной переменной и метод Рунге – Кутты для интегрирования по времени) подтверждают мультистабильность системы и иллюстрируют исчезновение семейства решений при разрушении косимметрии.
Ключевые слова: математическая экология, диффузия, таксис, теория косимметрии, жертва – хищник – суперхищник. -
Моделирование начального периода развития инфекции ВИЧ-1 в лимфоузле на основе дифференциальных уравнений с запаздыванием
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1181-1203Представлена математическая модель, описывающая динамику инфекции ВИЧ-1 в отдельно взятом лимфоузле в начальный период развития инфекции. В рамках модели инфицирование индивидуума задается неотрицательной финитной функцией, описывающей скорость поступления первоначальных вирусных частиц в лимфоузел. Уравнения модели построены с учетом следующих факторов: 1) взаимодействие вирусных частиц с наивными Т-лимфоцитами CD4+, находящимися в различных фазах клеточного цикла; 2) контактное взаимодействие между размножающимися наивными Т-лимфоцитами CD4+ и инфицированными Т-лимфоцитами CD4+, производящими вирусные частицы. Спецификой контактных межклеточных взаимодействий является образование комплексов, состоящих из пар указанных клеток. Длительности существования комплексов задаются функциями распределения на конечных промежутках времени. Модель записана в форме высокоразмерной системы нелинейных дифференциальных уравнений с запаздыванием, включая два уравнения с распределенным запаздыванием, и дополнена неотрицательными начальными данными. При отсутствии инфекции ВИЧ-1 модель сводится к четырем дифференциальным уравнениям с запаздыванием, описывающим численность наивных Т-лимфоцитов CD4+ в различных фазах клеточного цикла. Показана глобальная разрешимость модели (существование и единственность решения на полуоси) и установлена неотрицательность компонент решения. Для проведения вычислительных экспериментов с моделью разработан алгоритм численного решения используемой системы дифференциальных уравнений на основе полунеявной схемы Эйлера для случая равномерного распределения длительностей существования комплексов. Представлены результаты вычислительных экспериментов, направленных на приближение численного решения модели к описанию кинетики развития инфекции ВИЧ-1 в ее острой фазе, включая фазу эклипса. В качестве наблюдаемой использована переменная, описывающая количество вирусных частиц на один миллилитр крови на 10–12-е сутки после начала острой инфекции. Численно исследована динамика наблюдаемой переменной в зависимости от вариации параметров модели, отражающих закономерности формирования комплексов и образования клеток, производящих вирусные частицы. Показана возможность затухания инфекции ВИЧ-1 в лимфоузле при определенных значениях некоторых из параметров модели.
-
Является ли тик элементарным прыжком в схеме случайных блужданий на фондовом рынке?
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 219-223Просмотров за год: 3. Цитирований: 1 (РИНЦ).В работе экспериментально исследовалось среднее время между элементарными прыжками доходности различных акций на российском фондовом рынке. Исходя из скейлинга плотности распределения доходностей на разных временных масштабах, удалось показать, что элементарным прыжком в модели случайных блужданий для доходностей финансовых инструментов является единичное изменение цены (тик), соответствующее совершению одной сделки с инструментом на фондовой бирже.
-
Молекулярное моделирование и динамика комплексов серотонинового 5-HT3 рецептора с лигандами
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 329-334Цитирований: 1 (РИНЦ).Вопрос взаимодействия определенного рецептора с лигандами является ключевым в области клеточной сигнализации, но решается он на молекулярном уровне. Для улучшения понимания молекулярных механизмов взаимодействия серотонинового рецептора с лигандами были применены различные биофизические методы компьютерного моделирования. Модель трехмерной структуры надмембранного домена серотонинового 5-HT3 рецептора человека была построена по гомологии с никотиновым ацетилхолиновым рецептором nAChR (PDB ID: 2BG9). Методом докинга были получены комплексы 5-HT3 рецептора с лигандами. Методом молекулярной динамики исследовано взаимодействие серотонинового 5-HT3 рецептора с лигандами и показана роль различных факторов в стабилизации комплексов.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





