Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Глобальный бифуркационный анализ рациональной системы Холлинга
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 537-545Просмотров за год: 11.В статье рассматривается квартичное семейство планарных векторных полей, соответствующее рациональной системе Холлинга, которая моделирует динамику популяций типа «хищник–жертва» в данной экологической или биомедицинской системе и которая обобщает классическую систему Лотки–Вольтерры. В простейших математических моделях изменение концентрации жертв в единицу времени в расчете на одного хищника, которое характеризуется так называемой функцией отклика, прямо пропорционально концентрации жертв, т. е. функция отклика в этих моделях линейная. Это означает, что в системе нет насыщения хищников, когда количество жертв достаточно велико. Однако было бы более реалистично рассматривать нелинейные и ограниченные функции отклика, и в литературе действительно используются различные виды таких функций для моделирования отклика хищников. После алгебраических преобразований рациональную систему Холлинга можно записать в виде квартичной динамической системы. Для исследования характера и расположения особых точек в фазовой плоскости этой системы используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек (как конечных, так и бесконечно удаленных) в фазовой плоскости. Используя полученную информацию об особых точках и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов квартичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера–Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Применяя этот принцип, мы доказываем, что квадричная система (и соответствующая рациональная система Холлинга) может иметь не более двух предельных циклов, окружающих одну особую точку.
- Просмотров за год: 6.
- Просмотров за год: 10.
- Просмотров за год: 20.
-
Глобальные бифуркации предельных циклов полиномиальной системы Эйлера–Лагранжа–Льенара
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 693-705В данной статье, используя наш бифуркационно-геометрический подход, мы изучаем глобальную динамику и решаем проблему о максимальном числе и распределении предельных циклов (автоколебательных режимов, соответствующих состояниям динамического равновесия) в планарной полиномиальной механической системе типа Эйлера–Лагранжа–Льенара. Такие системы используются также для моделирования электротехнических, экологических, биомедицинских и других систем, что значительно облегчает исследование соответствующих реальных процессов и систем со сложной внутренней динамикой. Они используется, в частности, в механических системах с демпфированием и жесткостью. Существует ряд примеров технических систем, которые описываются с помощью квадратичного демпфирования в динамических моделях второго порядка. В робототехнике, например, квадратичное демпфирование появляется при управлении с прямой связью и в нелинейных устройствах, таких как приводы с переменным импедансом (сопротивлением). Приводы с переменным сопротивлением представляют особый интерес для совместной робототехники. Для исследования характера и расположения особых точек в фазовой плоскости полиномиальной системы Эйлера–Лагранжа–Льенара используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек в фазовой плоскости. Для исследования особых точек системы мы используем классические теоремы Пуанкаре об индексе, а также наш оригинальный геометрический подход, основанный на применении метода двух изоклин Еругина, что особенно эффективно при исследовании бесконечно удаленных особых точек. Используя полученную информацию об особых точках и применяя канонические системы с параметрами, поворачивающими векторное поле, а также используя геометрические свойства спиралей, заполняющих внутренние и внешние области предельных циклов, и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов рассматриваемой системы.
-
Исследование взаимосвязей размерных и продукционных характеристик фито- и зоопланктона в Вислинском и Куршском заливах Балтийского моря. Часть 1. Статистический анализ данных многолетних наблюдений и разработка структуры математической модели трофической цепи планктона
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 211-246В данной работе исследованы статистические взаимосвязи между размерными и продукционными характеристиками фито- и зоопланктона, обитающего в водах Вислинского и Куршского заливов Балтийского моря. Исследования фито- и зоопланктона в пределах российских частей акваторий Вислинского и Куршского заливов проводили ежемесячно (с апреля по ноябрь) в рамках программы многолетнего мониторинга состояния экосистем заливов. Размерная структура планктонных организмов — основа понимания развития продукционных процессов, механизмов формирования видового разнообразия планктона и функционирования экосистем заливов. По результатам работы установлено, что максимальная скорость фотосинтеза и величина интегральной первичной продукции меняются по степенному закону с изменением среднего ценотического объема клеток фитопланктона. Полученный результат показывает, что чем меньше размер клеток водорослей в фитопланктонных сообществах, тем активнее в них протекают процессы метаболизма и тем эффективнее усваивается солнечная энергия. Показано, что формирование видового разнообразия планктона в экосистемах заливов самым тесным образом связано и с размерной структурой планктонных сообществ, и с особенностями развития продукционных процессов. Предложена структура пространственно однородной математической модели планктонной трофической цепи для экосистем заливов, учитывающая размерные спектры и характеристики фито- и зоопланктона. Параметры модели — размерно-зависимые показатели, аллометрически связанные со средними объемами клеток и организмов в разных диапазонах их размеров. В модели предложен алгоритм изменения во времени коэффициентов предпочтения в питании зоопланктонных организмов. Разработанная размерно-зависимая математическая модель водных экосистем позволяет учесть воздействие турбулентного обмена на размерную структуру и временную динамику планктонной пищевой цепи Вислинского и Куршского заливов. Модель может быть использована для исследования различных режимов динамического поведения планктонной системы в зависимости от изменений значений ее параметров и внешних воздействий, а также для количественной оценки перераспределения потоков вещества в экосистемах заливов.
Ключевые слова: экосистема, биогенные вещества, фитопланктон, зоопланктон, планктонный детрит, размерная структура, максимальная скорость фотосинтеза, интегральная первичная продукция, продукция зоопланктона, аллометрическое масштабирование, индекс видового разнообразия Шеннона, математическое моделирование, экологическая имитационная модель, турбулентный обмен.Просмотров за год: 9.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"