Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'фактор':
Найдено статей: 116
  1. Кирилюк И.Л.
    Модели производственных функций для российской экономики
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 293-312

    В статье проведён сравнительный анализ применимости нескольких вариантов моделей производственной функции для анализа современной экономики России. Посредством регрессионного анализа оценено влияние таких факторов, как цены на нефть на мировом рынке, инновационные процессы, гипотеза о постоянной отдаче от факторов производства. Расчёты производились как для экономики в целом, так и для отдельных её отраслей. Показано, что рассматриваемые модели экономики России в целом и ряда её отраслей применительно к реальным данным демонстрируют значимую возрастающую отдачу по труду. Обсуждаются ограничения применимости моделей.

    Просмотров за год: 21. Цитирований: 65 (РИНЦ).
  2. Калачин С.В.
    Нечеткое моделирование восприимчивости человека к паническим ситуациям
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 203-218

    Изучение механизма развития массовой паники ввиду ее чрезвычайной значимости и социальной опасности представляет собой важную научную задачу. Имеющаяся информация о механизме ее разви- тия основана в основном на работах специалистов-психологов и относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели восприимчивости человека к паническим ситуациям выбрана теория нечетких множеств.

    В результате проведенного исследования разработана нечеткая модель, состоящая из следующих блоков: «Фаззификация», где происходит вычисление степени принадлежности значений входных пара- метров к нечетким множествам; «Вывод», где на основе степени принадлежности входных параметров вычисляется результирующая функция принадлежности выходного значения нечеткой модели; «Дефаззификация», где с помощью метода центра тяжести определяется единственное количественное значение выходной переменной, характеризующей восприимчивость человека к паническим ситуациям.

    Так как реальные количественные значения для лингвистических переменных психических свойств человека неизвестны, то оценить качество разработанной модели, создавая настоящую ситуацию страха и паники, не подвергая людей опасности, не представляется возможным. Поэтому качество результатов нечеткого моделирования оценивалось по расчетному значению коэффициента детерминации, показавшего, что разработанная нечеткая модель относится к разряду моделей хорошего качества $(R^2 = 0.93)$, что подтверждает правомерность принятых допущений при ее разработке.

    Согласно результатам моделирования восприимчивость человека к паническим ситуациям для сангвинического и холерического видов темперамента в соответствии с принятой классификацией можно отнести к повышенной (0.88), а для флегматического и меланхолического — к умеренной (0.38). Это означает, что холерики и сангвиники могут стать эпицентрами распространения паники и инициаторами возникновения давки, а флегматики и меланхолики — препятствиями на путях эвакуации, что необходимо учитывать при разработке эффективных эвакуационных мероприятий, главной задачей которых является быстрая и безопасная эвакуация людей из неблагоприятных условий.

    В утвержденных методиках расчет нормативных значений параметров безопасности основан на упрощенных аналитических моделях движения людского потока, потому что приходится учитывать большое число факторов, часть которых являются количественно неопределенными. Полученный результат в виде количественных оценок восприимчивости человека к паническим ситуациям позволит повысить точность расчетов.

  3. Васюков А.В., Беклемышева К.А., Онучин Е.С., Товарнова Н.А., Петров И.Б.
    Расчет скорости поперечной волны при ударе по предварительно нагруженным нитям
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 887-897

    В работе рассматривается задача о поперечном ударе по тонкой предварительно нагруженной нити. Общепринятая теория о поперечному даре по тонкой нити отталкивается от классических публикаций Рахматулина и Смита. На основании теории Рахматулина – Смита получены соотношения, широко используемые в инженерной практике. Однако существуют многочисленные данные о том, что экспериментальные результаты могут существенно отличаться от оценок, сделанных на базе этих соотношений. Краткий обзор факторов, которые вызывают отличия, приведен в тексте статьи.

    Основное внимание в данной статье уделяется скорости поперечной волны, формирующейся при ударе, так как только ее можно непосредственно наблюдать и измерять с помощью высокоскоростной съемки или иных методов. Рассматривается влияние предварительного натяжения нити на скорость волны. Данный фактор важен, так как он неизбежно возникает в результатах натурных испытаний в силу того, что надежное закрепление и точное позиционирование нити на экспериментальной установке требует некоторого ее натяжения. В данной работе показано, что предварительная деформация нити существенно влияет на скорость поперечной волны, возникающей в ходе ударного взаимодействия.

    Выполнены расчеты серии постановок для нитей Kevlar 29 и Spectra 1000. Для различных уровней начального натяжения получены скорости поперечных волн. Приведено прямое сравнение численных результатов и аналитических оценок с данными экспериментов. Для рассмотренных постановок скорость поперечной волны в свободной и в нагруженной нити отличалась практически в два раза. Таким образом, показано, что измерения, основанные на высокоскоростной съемке и анализе наблюдаемых поперечных волн, должны учитывать предварительную деформацию нити.

    В работе предложена формула для быстрой оценки скорости поперечной волны в натянутых нитях. Данная формула получена из основных соотношений теории Рахматулина – Смита в предположении большой начальной деформации нити. На примере рассмотренных постановок для Kevlar 29 и Spectra 1000 показано, что полученная формула может давать существенно лучшие результаты, чем классическое приближение. Также показано, что прямой численный расчет дает результаты, которые оказываются значительно ближе к экспериментальным данным, чем любая из рассмотренных аналитических оценок.

  4. Чертов О.Г., Надпорожская М.А.
    Модели динамики органического вещества почв: проблемы и перспективы
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 391-399

    Почва как сложная полифункциональная открытая система является одним из наиболее проблемных объектов для моделирования. Несмотря на значительные успехи в моделировании почвенной системы, существующие модели не отражают все факторы и процессы минерализации и гумификации органического вещества в почве. С учетом опыта создания и широкого применения системы моделей ROMUL и EFIMOD определены проблемы и точки роста в области моделирования динамики органического вещества почв и элементов-биофилов. В работе рассмотрены вопросы дальнейшего теоретического обоснования, улучшения структуры моделей, подготовки и неопределенности исходных данных, включения всей почвенной биоты (микроорганизмов, микро- и мезофауны) как факторов гумусообразования, влияния минералогического состава почв на динамику углерода и азота, гидротермического режима и формирования органического вещества по профилю почвы, вертикальной и горизонтальной миграции органического вещества. Для успешного решения этих задач необходима эффективная обратная связь между разработчиками моделей и экспериментаторами.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  5. Неверова Г.П., Фрисман Е.Я.
    Режимы динамики популяции с неперекрывающимися поколениями с учетом генетической и стадийной структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1165-1190

    В данной работе рассматривается простейшая модель динамики популяции с неперекрывающимися поколениями, в которой плотностно-зависимые факторы лимитируют интенсивность рождаемости. При этом репродуктивный потенциал определяется генетически, а процессы размножения приурочены к определенному годовому сезону. Исследуемая в работе эколого-генетическая модель представляет собой объединение экологической модели динамики лимитированной популяции с неперекрывающимися поколениями и микроэволюционной модели динамики ее генетической структуры для случая, когда адаптивное разнообразие репродуктивных возможностей в популяции определяется одним аутосомным диаллельным локусом с аллеломорфами $А$ и $а$. В ходе исследования данной модели показано, что генетический состав популяции (а именно, будет ли она полиморфной или мономорфной) определяется значениями репродуктивных потенциалов гетерозиготы и гомозигот. При этом режимы динамики численности популяции определяются величиной среднего репродуктивного потенциала зрелых особей и интенсивностью процессов саморегуляции. В частности, показано, что эволюционный рост среднего значения репродуктивного потенциала при плотностной регуляции рождаемости приводит к дестабилизации динамики численности возрастных групп. В то время как интенсивность процессов саморегуляции определяет характер возникающих колебаний, поскольку от количественной оценки именно этого фактора зависит сценарий потери устойчивости равновесных состояний. Показано, что закономерности возникновения и эволюции циклических режимов динамики в большой степени определяются особенностями жизненного цикла особей, составляющих популяцию. Именно жизненный цикл определяет наличие изолированных субпопуляций разных лет, что, в свою очередь, приводит к возможности независимой микроэволюции этих субпопуляций и возникновения сложных сценариев динамики как численности, так и генетической структуры. Закрепление разных адаптивных мутаций постепенно приведет к генетической (а возможно, и морфологической) дифференциации и к различиям в средних репродуктивных потенциалах субпопуляций и достижению ими разного равновесного уровня численности. Дальнейший эволюционный рост репродуктивных потенциалов экологически лимитированных субпопуляций приводит к колебаниям их численности, которые могут отличаться не только амплитудой, но и фазой. Обнаруженные в предложенной модели сценарии микроэволюции генетического состава популяции, связанные с колебаниями численности, вполне согласуются с результатами исследований популяции тихоокеанской горбуши, которая демонстрирует не только колебания численности, но и наличие генетически дифференцированных субпопуляций смежных поколений.

  6. Лелеков А.С., Тренкеншу Р.П.
    Моделирование динамики макромолекулярного состава микроводорослей в накопительной культуре
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 739-756

    В работе методом математического моделирования проведено исследование механизмов влияния света на скорость роста и макромолекулярный состав накопительной культуры микроводорослей. Показано, что даже при единственном лимитирующем факторе рост микроводорослей сопряжен со значительным изменением биохимического состава биомассы. Отмечено, что существующие математические модели, основанные на принципах ферментативной кинетики, не учитывают возможную смену лимитирующего фактора в процессе увеличения биомассы и не позволяют описать динамику относительного содержания ее биохимических компонентов. В качестве альтернативного подхода предложена двухкомпонентная модель, в основе которой положено предположение о двухстадийности фотоавтотрофного роста. Биомассу микроводорослей можно рассматривать в виде суммы двух макромолекулярных составляющих — структурной и резервной. Предполагается пропорциональность всех структурных компонентов биомассы, что значительно упрощает математические выкладки и верификацию модели. Предлагаемая модель представлена системой двух дифференциальных уравнений: скорость синтеза резервных составляющих биомассы определяется интенсивностью света, а структурных компонентов — потоком резервов на ключевой мультиферментный комплекс. Модель учитывает, что часть резервных компонентов расходуется на пополнение пула макроэргов. Скорости синтеза структурных и резервных форм биомассы заданы линейными сплайнами, которые позволяют учесть смену лимитирующего фактора с ростом плотности накопительной культуры. Показано, что в условиях светового лимитирования накопительную кривую необходимо разделять на несколько областей: неограниченного роста, малой концентрации клеток и оптически плотной культуры. Для каждого участка получены аналитические решения предлагаемой модели, которые выражены в элементарных функциях и позволяют оценить видоспецифические коэффициенты. Проведена верификация модели на экспериментальных данных роста биомассы и динамики относительного содержания хлорофилла $a$ накопительной культуры красной морской микроводоросли Pоrphуridium purpurеum.

  7. Говорков Д.А., Новиков В.П., Соловьёв И.Г., Цибульский В.Р.
    Интервальный анализ динамики растительного покрова
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1191-1205

    В развитие ранее полученного результата по моделированию динамики растительного покрова, вследствие изменчивости температурного фона, представлена новая схема интервального анализа динамики флористических образов формаций в случае, когда параметр скорости реагирования модели динамики каждого учетного вида растения задан интервалом разброса своих возможных значений. Желаемая в фундаментальных исследованиях детализация описания функциональных параметров макромоделей биоразнообразия, учитывающая сущностные причины наблюдаемых эволюционных процессов, может оказаться проблемной задачей. Использование более надежных интервальных оценок вариабельности функциональных параметров «обходит» проблему неопределенности в вопросах первичного оценивания эволюции фиторесурсного потенциала осваиваемых подконтрольных территорий. Полученные решения сохраняют не только качественную картину динамики видового разнообразия, но и дают строгую, в рамках исходных предположений, количественную оценку меры присутствия каждого вида растения. Практическая значимость схем двустороннего оценивания на основе конструирования уравнений для верхних и нижних границ траекторий разброса решений зависит от условий и меры пропорционального соответствия интервалов разбросов исходных параметров с интервалами разбросов решений. Для динамических систем желаемая пропорциональность далеко не всегда обеспечивается. Приведенные примеры демонстрирует приемлемую точность интервального оценивания эволюционных процессов. Важно заметить, что конструкции оценочных уравнений порождают исчезающие интервалы разбросов решений для квазипостоянных температурных возмущений системы. Иными словами, траектории стационарных температурных состояний растительного покрова предложенной схемой интервального оценивания не огрубляется. Строгость результата интервального оценивания видового состава растительного покрова формаций может стать определяющим фактором при выборе метода в задачах анализа динамики видового разнообразия и растительного потенциала территориальных систем ресурсно-экологического мониторинга. Возможности предложенного подхода иллюстрируются геоинформационными образами вычислительного анализа динамики растительного покрова полуострова Ямал и графиками ретроспективного анализа флористической изменчивости формаций ландшафтно-литологической группы «Верховые» по данным вариации летнего температурного фона метеостанции г. Салехарда от 2010 до 1935 года. Разработанные показатели флористической изменчивости и приведенные графики характеризуют динамику видового разнообразия, как в среднем, так и индивидуально, в виде интервалов возможных состояний по каждому учетному виду растения.

  8. Андреева А.А., Ананд М., Лобанов А.И., Николаев А.В., Пантелеев М.А.
    Использование продолженных систем ОДУ для исследования математических моделей свертывания крови
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 931-951

    Многие свойства решений систем обыкновенных дифференциальных уравнений определяются свойствами системы в вариациях. Продолженной системой будем называть систему ОДУ, включающую в себя одновременно исходную нелинейную систему и систему уравнений в вариациях. При исследовании свойств задачи Коши для систем обыкновенных дифференциальных уравнений переход к продолженным системам позволяет исследовать многие тонкие свойства решений. Например, переход к продолженной системе позволяет повысить порядок аппроксимации численных методов, дает подходы к построению функции чувствительности без использования процедур численного дифференцирования, позволяет применять для решения обратной задачи методы повышенного порядка сходимости. Использован метод Бройдена, относящийся к классу квазиньютоновских методов. Для решения жестких систем обыкновенных дифференциальных уравнений применялся метод Розенброка с комплексными коэффициентами. В данном случае он эквивалентен методу второго порядка аппроксимации для продолженной системы.

    В качестве примера использования подхода рассматривается несколько связанных между собой математических моделей свертывания крови. По результатам численных расчетов делается вывод о необходимости включения в систему уравнений описания петли положительных обратных связей по фактору свертывания XI. Приводятся оценки некоторых скоростей реакций на основе решения обратной задачи.

    Рассматривается влияние освобождения фактора V при активации тромбоцитов. При модификации математической модели удалось достичь количественного соответствия по динамике производства тромбина с экспериментальными данными для искусственной системы. На основе анализа чувствительности проверена гипотеза об отсутствии влияния состава липидной мембраны (числа сайтов для тех или иных факторов системы свертывания, кроме сайтов для тромбина) на динамику процесса.

  9. Дубинина М.Г.
    Пространственно-временные модели распространения информационно-коммуникационных технологий
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712

    В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.

    Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.

  10. Горбачев О.Г.
    Вероятностно-статистическая модель страхового капитала
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 231-235

    Обоснована необходимость введения в научный оборот новой экономической категории – страховой капитал. Показано, что страховая деятельность порождает специальную разновидность капитала (как фактора производства) – гарантийный фонд, который назван автором «основной денежный страховой капитал». Установлено, что наряду с общепринятыми свойствами капитала как фактора производства страховой капитал обладает рядом специфических свойств, обусловленных его вероятностно-статистической природой. На основе вероятностно-статистической модели исследована роль страхового капитала в формировании цены на страховую услугу. В частности, показано, что закон убывающей отдачи для страхового капитала не носит универсального характера.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.