Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'стохастический':
Найдено статей: 80
  1. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Просмотров за год: 28.
  2. Двинских Д.М., Пырэу В.В., Гасников А.В.
    О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319

    В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.

    В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.

  3. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

  4. Лубашевский И.А., Лубашевский В.И.
    Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87

    В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.

    В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.

  5. Соколов С.В., Маршаков Д.В., Решетникова И.В.
    Высокоточная оценка пространственной ориентации видеокамеры системы технического зрения подвижного робототехнического комплекса
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 93-107

    Эффективность подвижных робототехнических комплексов (ПРТК), осуществляющих мониторинг дорожной обстановки, городской инфраструктуры, последствий чрезвычайных ситуаций и пр., напрямую зависит от качества функционирования систем технического зрения, являющихся важнейшей частью ПРТК. В свою очередь, точность обработки изображений в системах технического зрения в существенной степени зависит от точности пространственной ориентации видеокамеры, размещаемой на ПРТК. Но при размещении видеокамер на ПРТК резко возрастает уровень погрешностей их пространственной ориентации, вызванных ветровыми и сейсмическими колебаниями мачты, движением ПРТК по пересеченной местности и пр. В связи с этим в статье рассмотрено общее решение задачи стохастической оценки параметров пространственной ориентации видеокамер в условиях как случайных колебаний мачты, так и произвольного характера движения ПРТК. Так как методы решения данной задачи на основе спутниковых измерений при высокой интенсивности естественных и искусственных радиопомех (способы формирования которых постоянно совершенствуются) не в состоянии обеспечить требуемую точность решения, то в основу предложенного подхода положено использование автономных средств измерения — инерциальных и неинерциальных. Но при их использовании возникает проблема построенияи стохастической оценки общей модели движения видеокамеры, сложность которой определяется произвольным движением ПРТК, случайными колебаниями мачты, помехами измеренияи др. В связи с нерешенностью данной проблемы на сегодняшний день в статье рассмотрен синтез как модели движения видеокамеры в самом общем случае, так и стохастической оценки ее параметров состояния. При этом разработанный алгоритм совместной оценки параметров пространственной ориентации видеокамеры, размещенной на мачте ПРТК, является инвариантным и к характеру движения мачты, и видеокамеры, и самого ПРТК, обеспечивая при этом устойчивость и требуемую точность оценивания при самых общих предположениях о характере помех чувствительных элементов используемого автономного измерительного комплекса. Результаты численного эксперимента позволяют сделать вывод о возможности практического применения предложенного подхода для решения задачи текущей пространственной ориентации ПРТК и размещенных на них видеокамер, причем с использованием недорогих автономных средств измерения.

  6. Брацун Д.А., Захаров А.П.
    Моделирование пространственно-временной динамики циркадианных ритмов Neurospora crassa
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 191-213

    В работе предложена новая модель циркадианных колебаний нейроспоры, которая описывает пространственно-временную динамику белков, ответственных за механизм биоритмов. Модель основывается на нелинейном взаимодействии белков FRQ и WCC, кодируемых генами frequency и white collar, и включает в себя как положительную, так и отрицательную петлю обратной связи. Главным элементом механизма колебаний является эффект запаздывания в биохимических реакциях транскрипции генов. Показано, что модель воспроизводит такие свойства циркадианных колебаний нейроспоры как захват частоты под действием внешнего периодического освещения, сброс фазы биоритмов при воздействии импульса света, устойчивость механизма колебаний по отношению к случайным флуктуациям и т. д. Исследованы волновые структуры, возникающие в ходе пространственной эволюции системы. Показано, что волны синхронизации биоритмов среды возникают под воздействием базального транскрипционного фактора.

    Просмотров за год: 6. Цитирований: 20 (РИНЦ).
  7. В работе рассматривается возбуждение колебаний в стохастических генных системах с запаздывающей обратной связью в процессах транскрипции. Колебания возникают из-за взаимодействия шума и запаздывания даже при значениях параметров, когда детерминистское описание предсказывает стационарное поведение. Эффект наиболее ярко проявляет себя, когда количество степеней свободы у системы невелико и роль флуктуаций становится принципиальной. Получено аналитическое решение мастер-уравнения. Приводятся результаты численного моделирования.

    Просмотров за год: 6. Цитирований: 12 (РИНЦ).
  8. Турченков Д.А., Турченков М.А.
    Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338

    Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.

    Просмотров за год: 5. Цитирований: 4 (РИНЦ).
  9. Башкирцева И.А., Екатеринчук Е.Д., Рязанова Т.В., Сысолятина А.А.
    Математическое моделирование стохастических равновесий и бизнес-циклов модели Гудвина
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 107-118

    В работе рассматривается модель экономической динамики Гудвина, находящаяся под воздействием случайных возмущений. Проведен полный параметрический анализ равновесий и циклов детерминированной системы. Исследованы вероятностные свойства аттракторов стохастической системы с использованием техники функций стохастической чувствительности и метода прямого численного моделирования. Обсуждается явление генерации стохастических бизнес-циклов в зоне, где исходная детерминированная модель имеет лишь устойчивые равновесия.

    Просмотров за год: 5. Цитирований: 4 (РИНЦ).
  10. Ряшко Л.Б., Слепухина Е.С.
    Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468

    Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.

    Просмотров за год: 11.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.