Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Эффективное и безошибочное сокрытие информации в гибридном домене цифровых изображений с использованием метаэвристической оптимизации
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 197-210Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.
-
Численное моделирование течения жидкости в насосе для перекачки крови в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1025-1038В программном комплексе FlowVision проведено численное моделирование течения жидкости в насосе для перекачки крови. Данная тестовая задача, предоставленная Центром устройств и радиологического здоровья Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США, предусматривала рассмотрение течения жидкости в соответствии с несколькими расчетными режимами. При этом для каждого расчетного случая задавалось определенное значение расхода жидкости и скорости вращения ротора. Необходимые для расчетов данные в виде точной геометрии, условий потока и характеристик жидкости были предоставлены всем участникам исследования, использующим для моделирования различные программные комплексы. Во FlowVision численное моделирование проводилось для шести режимов с ньютоновской жидкостью и стандартной моделью турбулентности $k-\varepsilon$, дополнительно были проведены расчеты пятого режима с моделью турбулентности $k-\omega$ SST и с использованием реологической модели жидкости Каро. На первом этапе численного моделирования была исследована сходимость по сетке, на основании которой выбрана итоговая сетка с числом ячеек порядка 6 миллионов. В связи с большим количеством ячеек для ускорения исследования часть расчетов проводилась на кластере «Ломоносов-2». В результате численного моделирования были получены и проанализированы значения перепада давления между входом и выходом насоса, скорости между лопатками ротора и в области диффузора, а также проведена визуализация распределения скорости в определенных сечениях. Для всех расчетных режимов осуществлялось сравнение перепада давления, полученного численно, с экспериментальными данными, а для пятого расчетного режима также производилось сравнение с экспериментом по распределению скорости между лопатками ротора и в области диффузора. Анализ данных показал хорошее соответствие результатов расчетов во FlowVision с результатами эксперимента и численного моделирования в других программных комплексах. Полученные во FlowVision результаты решения теста от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США позволяют говорить о том, что данный программный комплекс может быть использован для решения широкого спектра задач гемодинамики.
Ключевые слова: насос для перекачки крови, программный комплекс FlowVision, гемодинамика, валидационные расчеты. -
О некоторых методах зеркального спуска для задач сильно выпуклого программирования с липшицевыми функциональными ограничениями
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1727-1746Статья посвящена специальному подходу к субградиентным методам для задач сильно выпуклого программирования с несколькими функциональными ограничениями. Точнее говоря, рассматривается задача сильно выпуклой минимизации с несколькими сильно выпуклыми ограничениями-неравенствами и предлагаются оптимизационные методы первого порядка для такого класса задач. Особенность предложенных методов — возможность использования в теоретических оценках качества выдаваемого методом решения параметров сильной выпуклости именно тех функционалов ограничений, для которых нарушается условие продyктивности итерации. Основная задача — предложить для такой постановки субградиентный метод с адаптивными правилами подбора шагов и остановки метода. Ключевая идея предложенной в данной статье методики заключается в объединении двух подходов: схемы с переключениями по продуктивным и непродуктивным шагам и недавно предложенных модификаций зеркального спуска для задач выпуклого программирования, позволяющих игнорировать часть функциональных ограничений на непродуктивных шагах алгоритма. В статье описан субградиентний метод с переключением по продyктивным и непродyктивным шагам для задач сильно выпуклого программирования в случае, когда целевая функция и функциональные ограничения удовлетворяют условию Липшица. Также рассмотрен аналог этой схемы типа зеркального спуска для задач с относительно липшицевыми и относительно сильно выпуклыми целевой функцией и ограничениями. Для предлагаемых методов получены теоретические оценки качества выдаваемого решения, указывающие на оптимальность этих методов с точки зрения нижних оракульных оценок. Кроме того, поскольку во многих задачах операция нахождения точного вектора субградиента достаточно затратна, то для рассматриваемого класса задач исследованы аналоги указанных выше методов с заменой обычного субградиента на $\delta$-субградиент целевого функционала или функциональных ограничений-неравенств. Отмеченный подход может позволить сэкономить вычислительные затраты метода за счет отказа от требования доступности точного значения субградиента в текущей точке. Показано, что оценки качества решения при этом изменяются на величину $O(\delta)$. Также приводятся результаты численных экспериментов, иллюстрирующие преимущество предлагаемых в статье методов в сравнении с некоторыми ранее известными.
-
Использование пространственных моделей в массовой оценке стоимости объектов недвижимости
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 639-650Автором проведен анализ основных на текущий момент подходов к массовой оценке стоимости объектов недвижимости (российских и зарубежных), указаны их плюсы и минусы, а также представлен подход, основанный на применении пространственных регрессионных моделей, показывающий лучшие результаты по сравнению с обычными регрессионными моделями и применимый для российского рынка недвижимости.
Ключевые слова: массовая оценка, пространственные регрессионные модели.Просмотров за год: 3. Цитирований: 3 (РИНЦ). -
Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.
-
Предсказание производительности избранных типов циклов над одномерными массивами посредством анализа эмбеддингов промежуточных представлений
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 211-224Предложен метод отображения промежуточных представлений C-, C++-программ в пространство векторов (эмбеддингов) для оценки производительности программ на этапе компиляции, без необходимости исполнения. Использование эмбеддингов для данной цели позволяет не проводить сравнение графов исследуемых программ непосредственно, что вычислительно упрощает задачу сравнения программ. Метод основан на серии трансформаций исходного промежуточного представления (IR), таких как: инструментирование — добавление фиктивных инструкций в оптимизационном проходе компилятора в зависимости от разности смещений в текущей инструкции обращения к памяти относительно предыдущей, преобразование IR в многомерный вектор с помощью технологии IR2Vec с понижением размерности по алгоритму t-SNE (стохастическое вложение соседей с t-распределением). В качестве метрики производительности предлагается доля кэш-промахов 1-го уровня (D1 cache misses). Приводится эвристический критерий отличия программ с большей долей кэш-промахов от программ с меньшей долей по их образам. Также описан разработанный в ходе работы проход компилятора, генерирующий и добавляющий фиктивные инструкции IR согласно используемой модели памяти. Приведено описание разработанного программного комплекса, реализующего предложенный способ оценивания на базе компиляторной инфраструктуры LLVM. Проведен ряд вычислительных экспериментов на синтетических тестах из наборов программ с идентичными потоками управления, но различным порядком обращений к одномерному массиву, показано, что коэффициент корреляции между метрикой производительности и расстоянием до эмбеддинга худшей программы в наборе отрицателен вне зависимости от инициализации t-SNE, что позволяет сделать заключение о достоверности эвристического критерия. Также в статье рассмотрен способ генерации тестов. По результатам экспериментов, вариативность значений метрики производительности на исследуемых множествах предложена как метрика для улучшения генератора тестов.
-
Прогнозирование динамики трудовых ресурсов на многоотраслевом рынке труда
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 235-250Рассмотрена задача прогнозирования количества занятых и безработных многоотраслевого рынка труда на основе балансовой математической модели межотраслевых перемещений трудовых ресурсов.
Балансовая математическая модель позволяет вычислять значения показателей межотраслевых перемещений с помощью только статистических данных по отраслевой занятости и безработице, предоставляемых Федеральной службой государственной статистики. Вычисленные за несколько лет подряд показатели межотраслевых перемещений трудовых ресурсов используются для построения трендов каждого из этих показателей. С помощью найденных трендов осуществляется прогнозирование показателей межотраслевых перемещений трудовых ресурсов, на основе результатов которого проводится прогнозирование отраслевой занятости и безработицы исследуемого многоотраслевого рынка труда.
Предложенный подход применен для прогнозирования занятых специалистов в отраслях народного хозяйства Российской Федерации в 2011–2016 гг. Для описания тенденций показателей, определяющих межотраслевые перемещения трудовых ресурсов, использовались следующие виды трендов: линейный, нелинейный, константный. Порядок выбора трендов наглядно продемонстрирован на примере показателей, определяющих перемещения трудовых ресурсов из отрасли «Транспорт и связь» в отрасль «Здравоохранение и предоставление социальных услуг», а также из отрасли «Государственное управление и обеспечение военной безопасности, социальное обеспечение» в отрасль «Образование».
Произведено сравнение нескольких подходов к прогнозированию: наивный прогноз, в рамках которого прогнозирование показателей рынка труда осуществлялось только на основе константного тренда; прогнозирование на основе балансовой модели с использованием только константного тренда для всех показателей, определяющих межотраслевые перемещения трудовых ресурсов; прогноз непосредственно по количеству занятых в отраслях экономики с помощью рассматриваемых в работе видов трендов; прогнозирование на основе балансовой модели с выбором тренда для каждого показателя, определяющего межотраслевые перемещения трудовых ресурсов. Показано, что использование балансовой модели обеспечивает лучшее качество прогноза по сравнению с прогнозированиемне посредственно по количеству занятых. Учет трендов показателей межотраслевых перемещений улучшает качество прогноза.
Также в статье приведены примеры анализа состояния многоотраслевого рынка труда Российской Федерации. С помощью балансовой модели были получены такие сведения, как распределение исходящих из конкретных отраслей потоков трудовых ресурсов по отраслямэк ономики, отраслевая структура входящих в конкретные отрасли потоков трудовых ресурсов. Эти сведения не содержаться непосредственно в данных, предоставляемых Федеральной службой государственной статистики.
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
-
Применение метода Dynamic Mode Decomposition для поиска неустойчивых мод в задаче о ламинарно-турбулентном переходе
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1069-1090Ламинарно-турбулентный переход является предметом активных исследований, связанных с повышением экономической эффективности авиатранспорта, так как в турбулентном пограничном слое увеличивается сопротивление, что ведет к росту расхода топлива. Одним из направлений таких исследований является поиск эффективных методов нахождения положения перехода в пространстве. Используя эту информацию при проектировании летательного аппарата, инженеры могут прогнозировать его технические характеристики и рентабельность уже на начальных этапах проекта. Традиционным для индустрии подходом к решению задачи поиска координат ламинарно-турбулентного перехода является $e^N$-метод. Однако, несмотря на повсеместное применение, он обладает рядом существенных недостатков, так как основан на предположении о параллельности моделируемого потока, что ограничивает сценарии его применения, а также требует проводить вычислительно затратные расчеты в широком диапазоне частот и волновых чисел. Альтернативой $e^N$-методу может служить применение метода Dynamic Mode Decomposition, который позволяет провести анализ возмущений потока, напрямую используя данные о нем. Это избавляет от необходимости в проведении затратных вычислений, а также расширяет область применения метода ввиду отсутствия в его построении предположений о параллельности потока.
В представленном исследовании предлагается подход к нахождению положения ламинарно-турбулентного перехода с применением метода Dynamic Mode Decomposition, заключающийся в разбиении региона пограничного слоя на множества подобластей, по каждому из которых независимо вычисляется точка перехода, после чего результаты усредняются. Подход валидируется на случаях дозвукового и сверхзвукового обтекания двумерной пластины с нулевым градиентом давления. Результаты демонстрируют принципиальную применимость и высокую точность описываемого метода в широком диапазоне условий. Проводится сравнение с $e^N$-методом, доказывающее преимущества предлагаемого подхода, выражающиеся в более быстром получении результата при сопоставимой с $e^N$-методом точности получаемого решения, что говорит о перспективности использования описываемого подхода в прикладных задачах.
-
Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.
Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.
Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.
По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.
Ключевые слова: точки разворота, временные ряды, финансовые рынки, машинное обучение, нейронные сети.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"