Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'случайные переходы':
Найдено статей: 31
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Просмотров за год: 3.
  2. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Просмотров за год: 6.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Просмотров за год: 29.
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
  5. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  8. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 5-7
  9. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

  10. Максимова О.В., Григорьев В.И.
    Четырехфакторный вычислительный эксперимент для задачи случайного блуждания на двумерной решетке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 905-918

    Случайный поиск в настоящее время стал распространенным и эффективным средством решения сложных задач оптимизации и адаптации. В работе рассматривается задача о средней длительности случайного поиска одним объектом другого в зависимости от различных факторов на квадратной решетке. Решение поставленной задачи было реализовано при помощи проведения полного эксперимента с 4 факторами и ортогональным планом в 54 строки. В рамках каждой строки моделировались случайные блуждания двух точек с заданными начальными условиями и правила перехода, затем замерялась продолжительность поиска одного объекта другим. В результате построена регрессионная модель, отражающая среднюю длительность случайного поиска объекта в зависимости от четырех рассматриваемых факторов, задающих начальные положения двух объектов, условия их передвижения и обнаружения. Среди рассмотренных факторов, влияющих на среднее время поиска, определены наиболее значимые. По построенной модели проведена интерпретация в задаче случайного поиска объекта. Важным результатом работы стало то, что с помощью модели выявлено качественное и количественное влияние первоначальных позиций объектов, размера решетки и правил перемещения на среднее время продолжительности поиска. Показано, что начальное соседство объектов на решетке не гарантирует быстрый поиск, если каждый из них передвигается. Помимо этого, количественно оценено, во сколько раз может затянуться или сократиться среднее время поиска объекта при увеличении скорости ищущего объекта на 1 ед., а также при увеличении размера поля на 1 ед., при различных начальных положениях двух объектов. Выявлен экспоненциальный характер роста числа шагов поиска объекта при увеличении размера решетки при остальных фиксированных факторах. Найдены условия наиболее большого увеличения средней продолжительности поиска: максимальная удаленность объектов в сочетании с неподвижностью одного из них при изменении размеров поля на 1 ед. (т. е., к примеру, с $4 \times 4$ на $5 \times 5$) может увеличить в среднем продолжительность поиска в $e^{1.69} \approx 5.42$. Поставленная в работе задача может быть актуальна с точки зрения применения как в погранометрике для обеспечения безопасности государства, так и, к примеру, в теории массового обслуживания.

    Просмотров за год: 21.
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.